27,535 research outputs found

    An Efficient MCMC Approach to Energy Function Optimization in Protein Structure Prediction

    Full text link
    Protein structure prediction is a critical problem linked to drug design, mutation detection, and protein synthesis, among other applications. To this end, evolutionary data has been used to build contact maps which are traditionally minimized as energy functions via gradient descent based schemes like the L-BFGS algorithm. In this paper we present what we call the Alternating Metropolis-Hastings (AMH) algorithm, which (a) significantly improves the performance of traditional MCMC methods, (b) is inherently parallelizable allowing significant hardware acceleration using GPU, and (c) can be integrated with the L-BFGS algorithm to improve its performance. The algorithm shows an improvement in energy of found structures of 8.17% to 61.04% (average 38.9%) over traditional MH and 0.53% to 17.75% (average 8.9%) over traditional MH with intermittent noisy restarts, tested across 9 proteins from recent CASP competitions. We go on to map the Alternating MH algorithm to a GPGPU which improves sampling rate by 277x and improves simulation time to a low energy protein prediction by 7.5x to 26.5x over CPU. We show that our approach can be incorporated into state-of-the-art protein prediction pipelines by applying it to both trRosetta2's energy function and the distogram component of Alphafold1's energy function. Finally, we note that specially designed probabilistic computers (or p-computers) can provide even better performance than GPUs for MCMC algorithms like the one discussed here.Comment: 10 pages, 4 figure

    Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    Get PDF
    PURPOSE: Predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. METHODS: We identified major events in NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism’s fitness. RESULTS: Removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. CONCLUSION: The results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well. Genet Med 18 10, 1029–1036

    Exploiting Homology Information in Nontemplate Based Prediction of Protein Structures

    Get PDF
    In this paper we describe a novel strategy for exploring the conformational space of proteins and show that this leads to better models for proteins the structure of which is not amenable to template based methods. Our strategy is based on the assumption that the energy global minimum of homologous proteins must correspond to similar conformations, while the precise profiles of their energy landscape, and consequently the positions of the local minima, are likely to be different. In line with this hypothesis, we apply a replica exchange Monte Carlo simulation protocol that, rather than using different parameters for each parallel simulation, uses the sequences of homologous proteins. We show that our results are competitive with respect to alternative methods, including those producing the best model for each of the analyzed targets in the CASP10 (10th Critical Assessment of techniques for protein Structure Prediction) experiment free modeling category

    Hidden Markov Models for Gene Sequence Classification: Classifying the VSG genes in the Trypanosoma brucei Genome

    Full text link
    The article presents an application of Hidden Markov Models (HMMs) for pattern recognition on genome sequences. We apply HMM for identifying genes encoding the Variant Surface Glycoprotein (VSG) in the genomes of Trypanosoma brucei (T. brucei) and other African trypanosomes. These are parasitic protozoa causative agents of sleeping sickness and several diseases in domestic and wild animals. These parasites have a peculiar strategy to evade the host's immune system that consists in periodically changing their predominant cellular surface protein (VSG). The motivation for using patterns recognition methods to identify these genes, instead of traditional homology based ones, is that the levels of sequence identity (amino acid and DNA sequence) amongst these genes is often below of what is considered reliable in these methods. Among pattern recognition approaches, HMM are particularly suitable to tackle this problem because they can handle more naturally the determination of gene edges. We evaluate the performance of the model using different number of states in the Markov model, as well as several performance metrics. The model is applied using public genomic data. Our empirical results show that the VSG genes on T. brucei can be safely identified (high sensitivity and low rate of false positives) using HMM.Comment: Accepted article in July, 2015 in Pattern Analysis and Applications, Springer. The article contains 23 pages, 4 figures, 8 tables and 51 reference
    • …
    corecore