34,449 research outputs found

    A topological approach for protein classification

    Full text link
    Protein function and dynamics are closely related to its sequence and structure. However prediction of protein function and dynamics from its sequence and structure is still a fundamental challenge in molecular biology. Protein classification, which is typically done through measuring the similarity be- tween proteins based on protein sequence or physical information, serves as a crucial step toward the understanding of protein function and dynamics. Persistent homology is a new branch of algebraic topology that has found its success in the topological data analysis in a variety of disciplines, including molecular biology. The present work explores the potential of using persistent homology as an indepen- dent tool for protein classification. To this end, we propose a molecular topological fingerprint based support vector machine (MTF-SVM) classifier. Specifically, we construct machine learning feature vectors solely from protein topological fingerprints, which are topological invariants generated during the filtration process. To validate the present MTF-SVM approach, we consider four types of problems. First, we study protein-drug binding by using the M2 channel protein of influenza A virus. We achieve 96% accuracy in discriminating drug bound and unbound M2 channels. Additionally, we examine the use of MTF-SVM for the classification of hemoglobin molecules in their relaxed and taut forms and obtain about 80% accuracy. The identification of all alpha, all beta, and alpha-beta protein domains is carried out in our next study using 900 proteins. We have found a 85% success in this identifica- tion. Finally, we apply the present technique to 55 classification tasks of protein superfamilies over 1357 samples. An average accuracy of 82% is attained. The present study establishes computational topology as an independent and effective alternative for protein classification

    Heuristic Refinement Method for the Derivation of Protein Solution Structures: Validation on Cytochrome B562

    Get PDF
    A method is described for determining the family of protein structures compatible with solution data obtained primarily from nuclear magnetic resonance (NMR) spectroscopy. Starting with all possible conformations, the method systematically excludes conformations until the remaining structures are only those compatible with the data. The apparent computational intractability of this approach is reduced by assembling the protein in pieces, by considering the protein at several levels of abstraction, by utilizing constraint satisfaction methods to consider only a few atoms at a time, and by utilizing artificial intelligence methods of heuristic control to decide which actions will exclude the most conformations. Example results are presented for simulated NMR data from the known crystal structure of cytochrome b562 (103 residues). For 10 sample backbones an average root-mean-square deviation from the crystal of 4.1 A was found for all alpha-carbon atoms and 2.8 A for helix alpha-carbons alone. The 10 backbones define the family of all structures compatible with the data and provide nearly correct starting structures for adjustment by any of the current structure determination methods

    Development of a Bioaerosol single particle detector (BIO IN) for the Fast Ice Nucleus CHamber FINCH

    Get PDF
    In this work we present the setup and first tests of our new BIO IN detector. This detector was constructed to classify atmospheric ice nuclei (IN) for their biological content. It is designed to be coupled to the Fast Ice Nucleus CHamber FINCH. If one particle acts as an ice nucleus, it will be at least partly covered with ice at the end of the development section of the FINCH chamber. The device combines an auto-fluorescence detector and a circular depolarization detector for simultaneous detection of biological material and discrimination between water droplets, ice crystals and non activated large aerosol particles. The excitation of biological material with UV light and analysis of auto-fluorescence is a common principle used for flow cytometry, fluorescence microscopy, spectroscopy and imaging. The detection of auto-fluorescence of airborne single particles demands some more experimental effort. However, expensive commercial sensors are available for special purposes, e.g. size distribution measurements. But these sensors will not fit the specifications needed for the FINCH IN counter (e.g. high sample flow of up 10 LPM). The newly developed -low cost- BIO IN sensor uses a single high-power UV LED for the electronic excitation instead of much more expensive UV lasers. Other key advantages of the new sensor are the low weight, compact size, and the little effect on the aerosol sample, which allows it to be coupled with other instruments for further analysis. The instrument will be flown on one of the first missions of the new German research aircraft "HALO" (High Altitude and LOng range)

    Protein interactions in Xenopus germ plasm RNP particles

    Get PDF
    Hermes is an RNA-binding protein that we have previously reported to be found in the ribonucleoprotein (RNP) particles of Xenopus germ plasm, where it is associated with various RNAs, including that encoding the germ line determinant Nanos1. To further define the composition of these RNPs, we performed a screen for Hermes-binding partners using the yeast two-hybrid system. We have identified and validated four proteins that interact with Hermes in germ plasm: two isoforms of Xvelo1 (a homologue of zebrafish Bucky ball) and Rbm24b and Rbm42b, both RNA-binding proteins containing the RRM motif. GFP-Xvelo fusion proteins and their endogenous counterparts, identified with antisera, were found to localize with Hermes in the germ plasm particles of large oocytes and eggs. Only the larger Xvelo isoform was naturally found in the Balbiani body of previtellogenic oocytes. Bimolecular fluorescence complementation (BiFC) experiments confirmed that Hermes and the Xvelo variants interact in germ plasm, as do Rbm24b and 42b. Depletion of the shorter Xvelo variant with antisense oligonucleotides caused a decrease in the size of germ plasm aggregates and loosening of associated mitochondria from these structures. This suggests that the short Xvelo variant, or less likely its RNA, has a role in organizing and maintaining the integrity of germ plasm in Xenopus oocytes. While GFP fusion proteins for Rbm24b and 42b did not localize into germ plasm as specifically as Hermes or Xvelo, BiFC analysis indicated that both interact with Hermes in germ plasm RNPs. They are very stable in the face of RNA depletion, but additive effects of combinations of antisense oligos suggest they may have a role in germ plasm structure and may influence the ability of Hermes protein to effectively enter RNP particles

    Protein aggregates nucleate ice: the example of apoferritin

    Get PDF
    Biological material has gained increasing attention recently as a source of ice-nucleating particles that may account for cloud glaciation at moderate supercooling. While the ice-nucleation (IN) ability of some bacteria can be related to membrane-bound proteins with epitaxial fit to ice, little is known about the IN-active entities present in biological material in general. To elucidate the potential of proteins and viruses to contribute to the IN activity of biological material, we performed bulk freezing experiments with the newly developed drop freezing assay DRoplet Ice Nuclei Counter Zurich (DRINCZ), which allows the simultaneous cooling of 96 sample aliquots in a chilled ethanol bath. We performed a screening of common proteins, namely the iron storage protein ferritin and its iron-free counterpart apoferritin, the milk protein casein, the egg protein ovalbumin, two hydrophobins, and a yeast ice-binding protein, all of which revealed IN activity with active site densities > 0.1 mg−1 at −10 ∘C. The tobacco mosaic virus, a plant virus based on helically assembled proteins, also proved to be IN active with active site densities increasing from 100 mg−1 at −14 ∘C to 10 000 mg−1 at −20 ∘C. Among the screened proteins, the IN activity of horse spleen ferritin and apoferritin, which form cages of 24 co-assembled protein subunits, proved to be outstanding with active site densities > 10 mg−1 at −5 ∘C. Investigation of the pH dependence and heat resistance of the apoferritin sample confirmed the proteinaceous nature of its IN-active entities but excluded the correctly folded cage monomer as the IN-active species. A dilution series of apoferritin in water revealed two distinct freezing ranges, an upper one from −4 to −11 ∘C and a lower one from −11 to −21 ∘C. Dynamic light scattering measurements related the upper freezing range to ice-nucleating sites residing on aggregates and the lower freezing range to sites located on misfolded cage monomers or oligomers. The sites proved to persist during several freeze–thaw cycles performed with the same sample aliquots. Based on these results, IN activity seems to be a common feature of diverse proteins, irrespective of their function, but arising only rarely, most probably through defective folding or aggregation to structures that are IN active.This research has been supported by the Swiss National Foundation (grant nos. IZSEZ0_179149/1 and 200021_156581), the Basque government (Elkartek programmes ng 15 and ng 17), and the Spanish MINECO (grant no. MAT2013- 46006-R, programme MDM-2016-0618)
    corecore