123 research outputs found

    Applications of nuclear magnetic resonance spectroscopy: from drug discovery to protein structure and dynamics.

    Get PDF
    The versatility of nuclear magnetic resonance (NMR) spectroscopy is apparent when presented with diverse applications to which it can contribute. Here, NMR is used i) as a screening/ validation tool for a drug discovery program targeting the Phosphatase of Regenerating Liver 3 (PRL3), ii) to characterize the conformational heterogeneity of p53 regulator, Murine Double Minute X (MDMX), and iii) to characterize the solution dynamics of guanosine monophosphate kinase (GMPK). Mounting evidence suggesting roles for PRL3 in oncogenesis and metastasis has catapulted it into prominence as a cancer drug target. Yet, despite significant efforts, there are no PRL3 small molecule inhibitors currently in clinical trials. This work combines screening of an FDA-approved drug panel and the identification of binders by protein-observed NMR. FDA-approved drugs salirasib and candesartan were identified as potent inhibitors in in vitro inhibition and migration assays while a weak inhibitor, olsalazine, was identified by NMR as the first small molecule inhibitor to directly bind PRL3. NMR was also used to validate the binding of additional compounds identified as experimental PRL3 inhibitors. Thienopyridone, a potent experimental inhibitor, did not show direct binding to PRL3 but instead inhibited phosphatase activity via redox mechanism. NMR also revealed that other experimental inhibitors did not engage PRL3. Thus, there remains a need to identify potent PRL3-directed inhibitors. Meanwhile, molecular modeling revealed a putative druggable site that has not been thoroughly explored before. The current study provides some scaffolds such as candesartan and particularly, olsalazine, the only binder identified, that could be the starting point of further drug discovery efforts, as well as a putative site that can be targeted in silico. MDMX, a negative regulator of p53, is another important therapeutic target in cancer, along with the homologous protein, MDM2. Inhibitors that block the MDM2-p53 interaction have been identified and despite similarities in the binding site of these homologous proteins, these inhibitors are ineffective against MDMX. It is hypothesized that the flexibility of MDMX contributes to this significant difference in response to inhibitors, despite comparable affinity to their endogenous target, p53. Examination of available inhibitor-bound structures of MDMX reveal a conserved pharmacophore but the structures adopt distinct conformations away from the binding site. This implies that global motions of the protein might contribute to molecular recognition. The conformational heterogeneity in MDMX was further confirmed by collecting residual dipolar couplings (RDCs). Further investigations on both MDMX and MDM2 are necessary to uncover whether the flexibility of MDMX contributes to the differential binding to inhibitors. Finally, NMR relaxation methods and state-of-the-art high-power Carr-Purcell-Meiboom Gill (CPMG) relaxation dispersion measurements, the first documented application on an enzyme, were used to characterize the solution dynamics of GMPK and the changes in dynamics upon GMP binding. Substrate binding resulted in restricting the amplitudes of motion for backbone amide bonds within the picosecond-nanosecond timescale. Meanwhile, CPMG showed dispersion in both in the absence and presence of GMP, such that substrate binding did not quench dynamics within the microsecond-millisecond timescale. Interestingly, more residues are observed to have dispersion in the bound form, some near the C-terminal of helix 3, which has previously been proposed to be involved in product release. Current studies show that substrate binding affect different timescales of protein motion. Future work shall follow how motions within different timescales are affected as GMPK processes its substrates – such as, for instance, binding of ATP analogs within the ATP binding site or simultaneous occupancy of both substrate binding pockets. This paves the way for a complete picture of the relationship of function and dynamics in the conformational enzymatic cycle of a bi-substrate enzyme using GMPK as a model. The current work illustrates some of the diverse applications of NMR on three unique systems that are also drug targets. Information collected here can be leveraged on future structure and dynamics studies as well as drug discovery efforts targeting any of these proteins

    Geometric Algorithms for Protein Structure Determination Using Measurements From Nuclear Magnetic Resonance Spectroscopy

    Get PDF
    <p>In an environment such as a cell, the three-dimensional structure of a protein entirely determines its function. Hence, to understand the mechanics of biochemical processes necessary to sustain life, it is crucial to study the structures of proteins at atomic detail. When life is threatened by viral and bacterial pathogens, structural characterization of the proteins at play yields insights about possible treatments and therapeutics. Measurements from nuclear magnetic resonance spectroscopy (NMR) reveal information about the structures of proteins, but building accurate atomic-resolution models from such measurements is an arduous task. The ambiguity and uncertainty of these measurements, and the challenges of obtaining a sufficient number of measurements to uniquely describe a structure, contribute to the difficulty of protein structure determination by NMR.</p><p>The current widely-used computational methods using NMR measurements for structure determination primarily rely on various incarnations of stochastic optimization. These techniques have been used to determine protein structures of excellent quality, but in the long term, the reliability of these techniques is dubious (and in cases, demonstrably inadequate), especially as we attempt to solve increasingly difficult structures. Stochastic optimization, due to its random nature, may not always report the best solution. Other superior solutions may lie concealed in the landscape of the objective function and remain undiscovered. We therefore seek computational methods for structure determination that are imbued with guarantees about solution quality. In this dissertation, we present methods for protein structure determination by NMR that are able to guarantee structural solutions quantitatively agree with experimental measurements. Although the trade-off for guaranteeing completeness of algorithms for structure determination is often an exponential running time, for some methods, we remarkably obtained polynomial running times in addition to guarantees of completeness.</p>Dissertatio

    An in-silico study: Investigating small molecule modulators of bio-molecular interactions

    Get PDF
    Small molecule inhibitors are commonly used to target protein targets that assist in the spread of diseases such as AIDS, cancer and deadly forms of influenza. Despite drug companies spending millions on R&D, the number of drugs that pass clinical trials is limited due to difficulties in engineering optimal non-covalent interactions. As many protein targets have the ability to rapidly evolve resistance, there is an urgent need for methods that rapidly identify effective new compounds. The thermodynamic driving force behind most biochemical reactions is known as the Gibbs free energy and it contains opposing dynamic and structural components that are known as the entropy (ΔS°) and enthalpy (ΔH°) respectively. ΔG° = ΔH° - TΔS°. Traditionally, drug design focussed on complementing the shape of an inhibitor to the binding cavity to optimise ΔG° favourability. However, this approach neglects the entropic contribution and phenomena such as Entropy-Enthalpy Compensation (EEC) often result in favourable bonding interactions not improving ΔG°, due to entropic unfavorability. Similarly, attempts to optimise inhibitor entropy can also have unpredictable results. Experimental methods such as ITC report on global thermodynamics, but have difficulties identifying the underlying molecular rationale for measured values. However, computational techniques do not suffer from the same limitations. MUP-I can promiscuously bind panels of hydrophobic ligands that possess incremental structural differences. Thus, small perturbations to the system can be studied through various in silico approaches. This work analyses the trends exhibited across these panels by examining the dynamic component via the calculation of per-unit entropies of protein, ligand and solvent. Two new methods were developed to assess the translational and rotational contributions to TΔS°, and a protocol created to study ligand internalisation. Synthesising this information with structural data obtained from spatial data on the binding cavity, intermolecular contacts and H-bond analysis allowed detailed molecular rationale for the global thermodynamic signatures to be derived

    Asymmetric perturbations of signalling oligomers

    Full text link

    Structure and Dynamics of a Small Multidrug Resistance Transporter, EmrE

    Get PDF
    EmrE is a small multidrug resistance transporter in E. coli. It effluxes a wide range of antibiotics, thus contributing to the evolving epidemic of drug resistance. Despite its small size, EmrE is a fully functional transporter making it an ideal model system for a comprehensive study of the multidrug transport mechanism. In the transport cycle, EmrE must alternate between outward- and inward-facing conformations upon substrate binding to translocate substrates across the membrane. High-resolution structures of EmrE in complex with substrates facing different sides of the membrane will shed light on the coupling mechanism between substrate binding and transport. However, the conformational plasticity that enables EmrE to transport diverse drugs also makes it a very challenging system for high-resolution structural studies. The conformational dynamics inherent in the transport process require experimental measures of structural transitions to provide the link between static structures and functional transport. This thesis aims to characterize the structure and dynamics of EmrE in atomic detail using NMR, a well-established technique to study structure and dynamics of biomolecules simultaneously under a variety of conditions. In the case of EmrE, NMR spectroscopy is the best approach for high-resolution structures because the dynamic nature and small size of EmrE hamper X-ray crystallography and cryoEM approaches. I have made significant progress towards a better structure of EmrE using a slow-dynamics mutant and have achieved a near complete backbone and side chain ILV methyl assignment for this highly challenging helical membrane protein system. I have also collected a large data set of distance and orientational restraints. I have also used NMR and functional assays to characterize a series of mutants located near the transmembrane helix 3 (TM3) kink and have demonstrated the important role of TM3 kink formation for the global conformational interconversion required for alternating-access. My NMR data also suggest that hydration within the transport pore may be an important property fine-tuning the rates of conformational interconversion. My NMR pH titrations show that the slow-dynamics mutant also has elevated pKa values for E14, the critical residue for proton-coupling in EmrE. This provides the first experimental evidence of the physicochemical link between proton and substrate binding and alternating-access necessary for achieving coupled transport. By correlating high-resolution structural and dynamic data with functional transport assays, this thesis provides key insights into the multidrug transport mechanism of EmrE. The principles learned for EmrE set the stage for understanding even more challenging transporters

    Spektroskopische Untersuchungen zur Bestimmung von RNA-Ligand-Wechselwirkungen und RNA-Dynamiken

    Get PDF
    This thesis describes the structural characterization of interactions between biological relevant ribonucleic acid biomacromolecules (RNAs) and selected ligands to optimize the methodologies for the design of pharmacological lead compounds. To achieve this aim, not only the structures of the RNA, the ligand and their complexes need to be known, but also information about the inherent dynamics, especially of the target RNA, are necessary. To determine the structure and dynamics of these molecules and their complexes, liquid state nuclear magnetic resonance spectroscopy (NMR) is a suitable and powerful method. The necessity for these investigations arises from the lack of knowledge in RNA-ligand interactions, e.g. for the development of new medicinal drugs targeting crucial RNA sequences. In the first chapters of this thesis (Chapters II to IV), an introduction into RNA research is given with a focus on RNA structural features (Chapter II), into the interacting molecules, the biology of the specific RNA targets and the further development of their ligands (Chapter III) and into the NMR theory and methodologies used within this thesis (Chapter IV). Chapter II begins with a description of RNA characteristics and functions, placing the focus on the increasing attention that these biomacromolecules have attracted in recent years due to their diverse biological functionalities. This is followed by a detailed description of general structural features of RNA molecules. The biological functions of the RNAs investigated in this thesis (Human immunodeficiency virus PSI- and TAR-RNA and Coxsackievirus B3 Stemloop D in the 5’-cloverleaf element), together with their known structural characteristics are introduced in Chapter III. Furthermore, a description of the investigated ligands is given, focusing on the methods how their affinity and specificity were determined. The introduction is completed in Chapter IV, where the relevant NMR theory and methodologies are explained. First, kinetics and thermodynamics of ligand binding are summarized from an NMR point of view. Subsequently, a detailed description of the resonance assignment procedures for RNAs and peptidic ligands is given. This procedure mainly concentrates on the assignment of the proton resonances, which are essential for the later structure calculation from NMR restraints. The procedure for NMR structure calculation of RNA and its complexes follows with a short introduction into the programs ARIA and HADDOCK. The final part of this chapter explains the relaxation theory and the methodology to extract dynamic information from autocorrelated relaxation rates via the model-free formalism. In the Chapters V to VII of this thesis, the original publications are included and grouped into three topics. Chapter V comprehends the publications on the investigations of HIV PSI-RNA and its hexapeptidic ligand. These three publications[1-3] focus on the characterization of the ligand and its binding properties, its structure and the optimization of its composition aiming to improve its usage for further spectroscopic investigations.Die vorliegende Doktorarbeit behandelt die strukturelle Aufklärung von Wechselwirkungen zwischen biologisch relevanten Ribonukleinsäuren (RNA) und ausgewählten Liganden, sowie die Bestimmung der inhärenten Dynamik der RNA, um zur Methodenentwicklung für den Entwurf neuer Pharmaka beizutragen. Zur Bestimmung sowohl der Strukturen, als auch der Dynamiken stellt die Flüssig-Kernspinresonanz-Spektroskopie (NMR) eine ideale biophysikalische Methode dar. Die ersten Hälfte dieser Doktorarbeit gibt zum einen eine Einleitung in die RNA-Forschung mit besonderem Fokus auf den allgemeinen strukturellen und dynamischen Eigenschaften von Ribonukleinsäuren, stellt zweitens die ausgewählten RNA-Zielstrukturen und deren mit verschiedenen Methoden bestimmten Liganden vor, und erklärt drittens die zugrundeliegende NMR-Theorie und die verwendeten Methoden zur Untersuchung der Bindungs¬charakteristika, zur Strukturbestimmung der RNA und der Liganden und zur Ableitung dynamischer Parameter aus experimentellen Daten. Die zweite Hälfte dieser Arbeit ist der kumulative Teil und enthält die Originalpublikationen, die in drei Themenbereiche eingeteilt sind. Zuerst sind die drei Publikationen gruppiert, in denen die Bestimmung und Charakterisierung peptidischer Liganden der HIV Psi-RNA und deren Wechselwirkungen miteinander behandelt werden. Durch einen Phage-Display Assay wurde zunächst eine Konsensus¬sequenz eines peptidischen Liganden identifiziert (HWWPWW). Zur Verbesserung der Bindungseigenschaften wurde das Hexapeptid mittels einer Sequenzvariierung auf einer Membranoberfläche (SPOT-Assay) weiter optimiert (HKWPWW). Die weiteren strukturellen Untersuchungen der RNA-Ligand-Wechselwirkungen wurden per Fluoreszenz- und NMR-Spektroskopie durchgeführt, wobei die NMR-Spektroskopie aufzeigen konnte, dass das Peptid HKWPWW in zwei Konformationen der zentralen Prolinpeptidbindung zu beinahe gleichen Anteilen vorliegt. Die nächsten zwei Publikationen beschreiben die Ligandselektion gegen die Zielstruktur HIV TAR und die Strukturaufklärung des Komplexes mittels NMR-Spektroskopie. Als Liganden wurden Tripeptide synthetisiert, in denen zwei Arginine eine synthetische Aminosäure mit aromatischen oder hetero¬aromatischen Gruppierungen in ihrer Seitenkette flankieren. Mittels Fluoreszenz-Resonanz¬energietransfersichtung (FRET-Assay) wurde eine Vorauswahl der Liganden vorgenommen und die Interaktionen der ausgewählten Liganden mit der RNA per NMR-Spektroskopie konkretisiert. Eine intensive strukturelle Untersuchung des Liganden mit einer Pyrimidinylgruppe in der Seitenkette der zentralen Aminosäure in Komplex mit der TAR RNA ergab eine 2:1 Bindungsstöchiometrie des Liganden. Die erste stärkere Bindungsstelle im Bulge der RNA war bereits weitgehend bekannt als Ziel von Arginin-tragenden Liganden. Die strukturellen Untersuchungen konnten jedoch auch die zweite Bindungsstelle des Tripeptids unterhalb des Bulges lokalisieren. Zuletzt sind die zwei Publikationen zur Untersuchung der RNA-Dynamik zusammengefasst. Aus autokorrelierten Relaxationsraten der Kerne C1’ und C8 (für Purine) bzw. C6 (für Pyrimidine) in Nukleotiden der RNA Tetraloopsequenzen UUCG und CACG wurden mittels des Model-Free Formalismus Parameter abgeleitet, die über Dynamiken auf der Zeitskala von Pico- bis Nanosekunden der C-H Vektoren berichten. Die Verwendung optimierter und neuer Werte der C-H Bindungslänge und der Anisotropie der 13C-chemischen Verschiebung (13C-CSA) ermöglichte eine genauere Ableitung der inhärenten Dynamiken dieser RNA Moleküle. Diese Informationen konnten in die strukturellen Untersuchungen der glykosidischen Bindung durch kreuzkorrelierte Relaxationsraten eingebaut werden. Des Weiteren konnten die dynamischen Parameter bei verschiedenen Temperaturen mit Parametern abgeglichen werden, die aus Molekular-Dynamischen (MD) Trajektorien abgeleitet wurden. Dies ermöglichte die Visualisierung der internen Bewegungen zweier strukturell ähnlicher Tetraloops aus der YNMG-Familie, die sich aber in ihrer Stabilität unterscheiden. Bei Temperaturen nahe dem Schmelzpunkt des weniger stabilen CACG-Tetraloops offenbarten sich die Änderungen in der Dynamik, die zum Aufschmelzen des Loops führen

    Expanding the Toolbox for Computational Analysis in Rational Drug Discovery: Using Biomolecular Solvation to Predict Thermodynamic, Kinetic and Structural Properties of Protein-Ligand Complexes

    Get PDF
    Most biomolecular interactions occur in aqueous environment. Therefore, one must consider the interactions between proteins and water molecules when developing a drug molecule against a target protein. The study of these interactions is challenging using experimental techniques alone, therefore computer simulations are commonly used to study the molecular details of protein-water or ligand-water interactions. In the first study presented in this doctoral dissertation (Chapter 2), the development, parameterization and testing of an approach is presented that can be used to calculate the solvation contribution in protein-ligand binding thermodynamics. The approach uses an extensive amount of molecular dynamics trajectories in conjunction with GIST calculations in order to obtain models that can predict relative protein-ligand solvation thermodynamics. In order to validate the approach, the model system thrombin is investigated using a set of 53 ligands with experimentally characterized protein-ligand structures and ITC profiles. We found that the binding thermodynamics of 186 congeneric pairs of ligands can be accurately described using our solvation-based models. The relative free energy of binding for these 186 pairs can be calculated from the desolvation free energy of the ligand molecules alone. Furthermore, complete thermodynamic profiles for protein-ligand binding reactions (i.e. free energy, enthalpy and entropy of binding) are accurately predicted by incorporating GIST solvent data from the unbound ligand as well as the protein-ligand complex. In Chapter 3, the aforementioned approach is applied to develop a strategy that enables to equip drug molecules with a desired set of solvation thermodynamics properties. For this purpose, the thrombin ligands (same ligand series as in previous Chapter 2) and the corresponding GIST integrals are decomposed into smaller building block molecules. In the next step, the solvation thermodynamics for the building blocks in the ligand molecule as well as the solvation thermodynamics for the isolated building block in aqueous solution are calculated. We found greatly varying solvation thermodynamics for the different building blocks, demonstrating their potential to design ligands with a wide range of solvation characteristics. Also, we found that the building block decomposition of ligand molecules and the corresponding GIST integrals can be readily used to understand remote solvent structuring effects. These effects occur in the unbound ligand molecule and describe the enhanced solvent structuring on a building block in the ligand molecule due to the presence of another building block at a distal site of the ligand. Furthermore, we demonstrated that the fluorination of building blocks leads to an increased unfavorable desolvation free energy and thus disfavors binding for the presented dataset. The research presented in Chapter 2 and Chapter 3 was accomplished with the computer program Gips that was developed as part of this doctoral dissertation. In the following Chapter 4, the mechanism and time scale of desolvation is being analyzed for the protein-ligand dissociation reaction of trypsin and thrombin in complex with benzamidine and N amidinopiperidine. The analysis is carried out using umbrella sampling free energy calculations and LoCorA calculations. The LoCorA approach is a method for the analysis of residence times of water molecules on the surface of amino acids. It was found that water molecules reside approximately 1.3 ns in the binding pocket of thrombin, whereas in trypsin they are residing one order of magnitude shorter (0.3 ns). This difference is explained with special solvent channels that connect the interior of the binding pocket to bulk solvent environment. The solvent channels are present in thrombin but not in trypsin. Furthermore, the selectivity profiles of benzamidine and N amidinopiperidine are related to a solvent-mediated free energy barrier that is present in thrombin but not trypsin. Also due to the presence of the solvent channels, the water molecules show similar residence time for both complexes in the case of thrombin but differing residence times in the case of the two trypsin complexes. The LoCorA approach is implemented in the computer program LoCorA (same name as the approach itself), which was developed as part of this doctoral dissertation. In the course of this doctoral dissertation, further computational studies were carried out in combination with experimental ones. These can be found in chapter 5 of this dissertation. Each of these studies is preceded by a separate abstract and a statement concerning the author contribution
    • …
    corecore