8,614 research outputs found

    Protein fold recognition using an overlapping segmentation approach and a mixture of feature extraction models

    Get PDF
    Protein Fold Recognition (PFR) is considered as a critical step towards the protein structure prediction problem. PFR has also a profound impact on protein function determination and drug design. Despite all the enhancements achieved by using pattern recognition-based approaches in the protein fold recognition, it still remains unsolved and its prediction accuracy remains limited. In this study, we propose a new model based on the concept of mixture of physicochemical and evolutionary features. We then design and develop two novel overlapping segmented-based feature extraction methods. Our proposed methods capture more local and global discriminatory information than previously proposed approaches for this task. We investigate the impact of our novel approaches using the most promising attributes selected from a wide range of physicochemical-based attributes (117 attributes) which is also explored experimentally in this study. By using Support Vector Machine (SVM) our experimental results demonstrate a significant improvement (up to 5.7%) in the protein fold prediction accuracy compared to previously reported results found in the literature

    An Overview of the Use of Neural Networks for Data Mining Tasks

    Get PDF
    In the recent years the area of data mining has experienced a considerable demand for technologies that extract knowledge from large and complex data sources. There is a substantial commercial interest as well as research investigations in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from datasets. Artificial Neural Networks (NN) are popular biologically inspired intelligent methodologies, whose classification, prediction and pattern recognition capabilities have been utilised successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks

    A Speech Recognizer based on Multiclass SVMs with HMM-Guided Segmentation

    Get PDF
    Automatic Speech Recognition (ASR) is essentially a problem of pattern classification, however, the time dimension of the speech signal has prevented to pose ASR as a simple static classification problem. Support Vector Machine (SVM) classifiers could provide an appropriate solution, since they are very well adapted to high-dimensional classification problems. Nevertheless, the use of SVMs for ASR is by no means straightforward, mainly because SVM classifiers require an input of fixed-dimension. In this paper we study the use of a HMM-based segmentation as a mean to get the fixed-dimension input vectors required by SVMs, in a problem of isolated-digit recognition. Different configurations for all the parameters involved have been tested. Also, we deal with the problem of multi-class classification (as SVMs are initially binary classifers), studying two of the most popular approaches: 1-vs-all and 1-vs-1

    Gram - positive and gram - negative subcellular localization using rotation forest and physicochemical-based features

    Get PDF
    The functioning of a protein relies on its location in the cell. Therefore, predicting protein subcellular localization is an important step towards protein function prediction. Recent studies have shown that relying on Gene Ontology (GO) for feature extraction can improve the prediction performance. However, for newly sequenced proteins, the GO is not available. Therefore, for these cases, the prediction performance of GO based methods degrade significantly. Results: In this study, we develop a method to effectively employ physicochemical and evolutionary-based information in the protein sequence. To do this, we propose segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids to tackle Gram-positive and Gram-negative subcellular localization. We explore our proposed feature extraction techniques using 10 attributes that have been experimentally selected among a wide range of physicochemical attributes. Finally by applying the Rotation Forest classification technique to our extracted features, we enhance Gram-positive and Gram-negative subcellular localization accuracies up to 3.4% better than previous studies which used GO for feature extraction. Conclusion: By proposing segmentation based feature extraction method to explore potential discriminatory information based on physicochemical properties of the amino acids as well as using Rotation Forest classification technique, we are able to enhance the Gram-positive and Gram-negative subcellular localization prediction accuracies, significantly

    DeepSig: Deep learning improves signal peptide detection in proteins

    Get PDF
    Motivation: The identification of signal peptides in protein sequences is an important step toward protein localization and function characterization. Results: Here, we present DeepSig, an improved approach for signal peptide detection and cleavage-site prediction based on deep learning methods. Comparative benchmarks performed on an updated independent dataset of proteins show that DeepSig is the current best performing method, scoring better than other available state-of-the-art approaches on both signal peptide detection and precise cleavage-site identification. Availability and implementation: DeepSig is available as both standalone program and web server at https://deepsig.biocomp.unibo.it. All datasets used in this study can be obtained from the same website

    Comparison of Artificial Intelligence based approaches to cell function prediction

    Get PDF
    Predicting Retinal Pigment Epithelium (RPE) cell functions in stem cell implants using non-invasive bright field microscopy imaging is a critical task for clinical deployment of stem cell therapies. Such cell function predictions can be carried out using Artificial Intelligence (AI) based models. In this paper we used Traditional Machine Learning (TML) and Deep Learning (DL) based AI models for cell function prediction tasks. TML models depend on feature engineering and DL models perform feature engineering automatically but have higher modeling complexity. This work aims at exploring the tradeoffs between three approaches using TML and DL based models for RPE cell function prediction from microscopy images and at understanding the accuracy relationship between pixel-, cell feature-, and implant label-level accuracies of models. Among the three compared approaches to cell function prediction, the direct approach to cell function prediction from images is slightly more accurate in comparison to indirect approaches using intermediate segmentation and/or feature engineering steps. We also evaluated accuracy variations with respect to model selections (five TML models and two DL models) and model configurations (with and without transfer learning). Finally, we quantified the relationships between segmentation accuracy and the number of samples used for training a model, segmentation accuracy and cell feature error, and cell feature error and accuracy of implant labels. We concluded that for the RPE cell data set, there is a monotonic relationship between the number of training samples and image segmentation accuracy, and between segmentation accuracy and cell feature error, but there is no such a relationship between segmentation accuracy and accuracy of RPE implant labels
    corecore