3,341 research outputs found

    LightDock: a new multi-scale approach to protein–protein docking

    Get PDF
    Computational prediction of protein–protein complex structure by docking can provide structural and mechanistic insights for protein interactions of biomedical interest. However, current methods struggle with difficult cases, such as those involving flexible proteins, low-affinity complexes or transient interactions. A major challenge is how to efficiently sample the structural and energetic landscape of the association at different resolution levels, given that each scoring function is often highly coupled to a specific type of search method. Thus, new methodologies capable of accommodating multi-scale conformational flexibility and scoring are strongly needed. We describe here a new multi-scale protein–protein docking methodology, LightDock, capable of accommodating conformational flexibility and a variety of scoring functions at different resolution levels. Implicit use of normal modes during the search and atomic/coarse-grained combined scoring functions yielded improved predictive results with respect to state-of-the-art rigid-body docking, especially in flexible cases.B.J-G was supported by a FPI fellowship from the Spanish Ministry of Economy and Competitiveness. This work was supported by I+D+I Research Project grants BIO2013-48213-R and BIO2016-79930-R from the Spanish Ministry of Economy and Competitiveness. This work is partially supported by the European Union H2020 program through HiPEAC (GA 687698), by the Spanish Government through Programa Severo Ochoa (SEV-2015-0493), by the Spanish Ministry of Science and Technology (TIN2015-65316-P) and the Departament d’Innovació, Universitats i Empresa de la Generalitat de Catalunya, under project MPEXPAR: Models de Programaciói Entorns d’Execució Paral·lels (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Unfolding simulations reveal the mechanism of extreme unfolding cooperativity in the kinetically stable alpha-lytic protease.

    Get PDF
    Kinetically stable proteins, those whose stability is derived from their slow unfolding kinetics and not thermodynamics, are examples of evolution's best attempts at suppressing unfolding. Especially in highly proteolytic environments, both partially and fully unfolded proteins face potential inactivation through degradation and/or aggregation, hence, slowing unfolding can greatly extend a protein's functional lifetime. The prokaryotic serine protease alpha-lytic protease (alphaLP) has done just that, as its unfolding is both very slow (t(1/2) approximately 1 year) and so cooperative that partial unfolding is negligible, providing a functional advantage over its thermodynamically stable homologs, such as trypsin. Previous studies have identified regions of the domain interface as critical to alphaLP unfolding, though a complete description of the unfolding pathway is missing. In order to identify the alphaLP unfolding pathway and the mechanism for its extreme cooperativity, we performed high temperature molecular dynamics unfolding simulations of both alphaLP and trypsin. The simulated alphaLP unfolding pathway produces a robust transition state ensemble consistent with prior biochemical experiments and clearly shows that unfolding proceeds through a preferential disruption of the domain interface. Through a novel method of calculating unfolding cooperativity, we show that alphaLP unfolds extremely cooperatively while trypsin unfolds gradually. Finally, by examining the behavior of both domain interfaces, we propose a model for the differential unfolding cooperativity of alphaLP and trypsin involving three key regions that differ between the kinetically stable and thermodynamically stable classes of serine proteases

    Three-dimensional structure and flexibility of a membrane-coating module of the nuclear pore complex.

    Get PDF
    The nuclear pore complex mediates nucleocytoplasmic transport in all eukaryotes and is among the largest cellular assemblies of proteins, collectively known as nucleoporins. Nucleoporins are organized into distinct subcomplexes. We optimized the isolation of a putative membrane-coating subcomplex of the nuclear pore complex, the heptameric Nup84 complex, and analyzed its structure by EM. Our data confirmed the previously reported 'Y' shape. We discerned additional structural details, including specific hinge regions at which the particle shows great flexibility. We determined the three-dimensional structures of two conformers, mapped the localization of two nucleoporins within the subcomplex and docked known crystal structures into the EM maps. The free ends of the Y-shaped particle are formed by beta-propellers; the connecting segments consist of alpha-solenoids. Notably, the same organizational principle is found in the clathrin triskelion, which may share a common evolutionary origin with the heptameric complex

    Colloidal particle motion as a diagnostic of DNA conformational transitions

    Get PDF
    Tethered particle motion is an experimental technique to monitor conformational changes in single molecules of DNA in real time, by observing the position fluctuations of a micrometer-size particle attached to the DNA. This article reviews some recent work on theoretical problems inherent in the interpretation of TPM experiments, both in equilibrium and dynamical aspects.Comment: 19pp. Accepted for publication in Curr Op Colloid Interf Scienc

    Differential Dynamics at Glycosidic Linkages of an Oligosaccharide as Revealed by 13C NMR Spin Relaxation and Stochastic Modeling

    Get PDF
    Among biomolecules, carbohydrates are unique in that not only can linkages be formed through different positions but the structures may also be branched. The trisaccharide \uf062-D-Glcp-(1\uf0ae3)[\uf062-D-Glcp-(1\uf0ae2)]-\uf061-D-Manp-OMe represents a model of a branched vicinally disubstituted structure. A 13C site-specific isotopologue with labeling in each of the two terminal glucosyl residues enabled acquisition of high-quality 13C NMR relaxation parameters T1, T2 and heteronuclear NOE, with standard deviations of \uf0a3 0.5%. For interpretation of the experimental NMR data a diffusive chain model was used in which the dynamics of the glycosidic linkages is coupled to the global reorientation motion of the trisaccharide. Brownian dynamics simulations relying on the potential of mean force at the glycosidic linkages were employed to evaluate spectral densities of the spin probes. Calculated NMR relaxation parameters showed very good agreement with experimental data, deviating < 3%. The resulting dynamics is described by correlation times of 196 ps and 174 ps for the \uf062-(1\uf0ae2)- and \uf062-(1\uf0ae3)-linked glucosyl residues, respectively, i.e., different and linkage dependent. Notably, the devised computational protocol was performed without any fitting of parameters

    Efficient use of single molecule time traces to resolve kinetic rates, models and uncertainties

    Full text link
    Single molecule time traces reveal the time evolution of unsynchronized kinetic systems. Especially single molecule F\"orster resonance energy transfer (smFRET) provides access to enzymatically important timescales, combined with molecular distance resolution and minimal interference with the sample. Yet the kinetic analysis of smFRET time traces is complicated by experimental shortcomings - such as photo-bleaching and noise. Here we recapitulate the fundamental limits of single molecule fluorescence that render the classic, dwell-time based kinetic analysis unsuitable. In contrast, our Single Molecule Analysis of Complex Kinetic Sequences (SMACKS) considers every data point and combines the information of many short traces in one global kinetic rate model. We demonstrate the potential of SMACKS by resolving the small kinetic effects caused by different ionic strengths in the chaperone protein Hsp90. These results show an unexpected interrelation between conformational dynamics and ATPase activity in Hsp90.Comment: 17 pages, 6 figure

    Methods for protein complex prediction and their contributions towards understanding the organization, function and dynamics of complexes

    Get PDF
    Complexes of physically interacting proteins constitute fundamental functional units responsible for driving biological processes within cells. A faithful reconstruction of the entire set of complexes is therefore essential to understand the functional organization of cells. In this review, we discuss the key contributions of computational methods developed till date (approximately between 2003 and 2015) for identifying complexes from the network of interacting proteins (PPI network). We evaluate in depth the performance of these methods on PPI datasets from yeast, and highlight challenges faced by these methods, in particular detection of sparse and small or sub- complexes and discerning of overlapping complexes. We describe methods for integrating diverse information including expression profiles and 3D structures of proteins with PPI networks to understand the dynamics of complex formation, for instance, of time-based assembly of complex subunits and formation of fuzzy complexes from intrinsically disordered proteins. Finally, we discuss methods for identifying dysfunctional complexes in human diseases, an application that is proving invaluable to understand disease mechanisms and to discover novel therapeutic targets. We hope this review aptly commemorates a decade of research on computational prediction of complexes and constitutes a valuable reference for further advancements in this exciting area.Comment: 1 Tabl

    Conformational Proofreading: The Impact of Conformational Changes on the Specificity of Molecular Recognition

    Get PDF
    To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution
    corecore