16,486 research outputs found

    Understanding Shoulder Surfing in the Wild: Stories from Users and Observers

    Get PDF
    Research has brought forth a variety of authentication systems to mitigate observation attacks. However, there is little work about shoulder surfing situations in the real world. We present the results of a user survey (N=174) in which we investigate actual stories about shoulder surfing on mobile devices from both users and observers. Our analysis indicates that shoulder surfing mainly occurs in an opportunistic, non-malicious way. It usually does not have serious consequences, but evokes negative feelings for both parties, resulting in a variety of coping strategies. Observed data was personal in most cases and ranged from information about interests and hobbies to login data and intimate details about third persons and relationships. Thus, our work contributes evidence for shoulder surfing in the real world and informs implications for the design of privacy protection mechanisms

    EyeSpot: leveraging gaze to protect private text content on mobile devices from shoulder surfing

    Get PDF
    As mobile devices allow access to an increasing amount of private data, using them in public can potentially leak sensitive information through shoulder surfing. This includes personal private data (e.g., in chat conversations) and business-related content (e.g., in emails). Leaking the former might infringe on users’ privacy, while leaking the latter is considered a breach of the EU’s General Data Protection Regulation as of May 2018. This creates a need for systems that protect sensitive data in public. We introduce EyeSpot, a technique that displays content through a spot that follows the user’s gaze while hiding the rest of the screen from an observer’s view through overlaid masks. We explore different configurations for EyeSpot in a user study in terms of users’ reading speed, text comprehension, and perceived workload. While our system is a proof of concept, we identify crystallized masks as a promising design candidate for further evaluation with regard to the security of the system in a shoulder surfing scenario

    GazeTouchPIN: Protecting Sensitive Data on Mobile Devices Using Secure Multimodal Authentication

    Get PDF
    Although mobile devices provide access to a plethora of sensitive data, most users still only protect them with PINs or patterns, which are vulnerable to side-channel attacks (e.g., shoulder surfing). How-ever, prior research has shown that privacy-aware users are willing to take further steps to protect their private data. We propose GazeTouchPIN, a novel secure authentication scheme for mobile devices that combines gaze and touch input. Our multimodal approach complicates shoulder-surfing attacks by requiring attackers to ob-serve the screen as well as the user’s eyes to and the password. We evaluate the security and usability of GazeTouchPIN in two user studies (N=30). We found that while GazeTouchPIN requires longer entry times, privacy aware users would use it on-demand when feeling observed or when accessing sensitive data. The results show that successful shoulder surfing attack rate drops from 68% to 10.4%when using GazeTouchPIN

    Conceivable security risks and authentication techniques for smart devices

    Get PDF
    With the rapidly escalating use of smart devices and fraudulent transaction of users’ data from their devices, efficient and reliable techniques for authentication of the smart devices have become an obligatory issue. This paper reviews the security risks for mobile devices and studies several authentication techniques available for smart devices. The results from field studies enable a comparative evaluation of user-preferred authentication mechanisms and their opinions about reliability, biometric authentication and visual authentication techniques

    Automated Privacy Protection for Mobile Device Users and Bystanders in Public Spaces

    Get PDF
    As smartphones have gained popularity over recent years, they have provided usersconvenient access to services and integrated sensors that were previously only available through larger, stationary computing devices. This trend of ubiquitous, mobile devices provides unparalleled convenience and productivity for users who wish to perform everyday actions such as taking photos, participating in social media, reading emails, or checking online banking transactions. However, the increasing use of mobile devices in public spaces by users has negative implications for their own privacy and, in some cases, that of bystanders around them. Specifically, digital photography trends in public have negative implications for bystanders who can be captured inadvertently in users’ photos. Those who are captured often have no knowledge of being photographed and have no control over how photos of them are distributed. To address this growing issue, a novel system is proposed for protecting the privacy of bystanders captured in public photos. A fully automated approach to accurately distinguish the intended subjects from strangers is explored. A feature-based classification scheme utilizing entire photos is presented. Additionally, the privacy-minded case of only utilizing local face images with no contextual information from the original image is explored with a convolutional neural network-based classifier. Three methods of face anonymization are implemented and compared: black boxing, Gaussian blurring, and pose-tolerant face swapping. To validate these methods, a comprehensive user survey is conducted to understand the difference in viability between them. Beyond photographing, the privacy of mobile device users can sometimes be impacted in public spaces, as visual eavesdropping or “shoulder surfing” attacks on device screens become feasible. Malicious individuals can easily glean personal data from smartphone and mobile device screens while they are accessed visually. In order to protect displayed user content, anovel, sensor-based visual eavesdropping detection scheme using integrated device cameras is proposed. In order to selectively obfuscate private content while an attacker is nearby, a dynamic scheme for detecting and hiding private content is also developed utilizing User-Interface-as-an-Image (UIaaI). A deep, convolutional object detection network is trained and utilized to identify sensitive content under this scheme. To allow users to customize the types ofcontent to hide, dynamic training sample generation is introduced to retrain the content detection network with very few original UI samples. Web applications are also considered with a Chrome browser extension which automates the detection and obfuscation of sensitive web page fields through HTML parsing and CSS injection

    They Are All After You: Investigating the Viability of a Threat Model That Involves Multiple Shoulder Surfers

    Get PDF
    Many of the authentication schemes for mobile devices that were proposed lately complicate shoulder surfing by splitting the attacker's attention into two or more entities. For example, multimodal authentication schemes such as GazeTouchPIN and GazeTouchPass require attackers to observe the user's gaze input and the touch input performed on the phone's screen. These schemes have always been evaluated against single observers, while multiple observers could potentially attack these schemes with greater ease, since each of them can focus exclusively on one part of the password. In this work, we study the effectiveness of a novel threat model against authentication schemes that split the attacker's attention. As a case study, we report on a security evaluation of two state of the art authentication schemes in the case of a team of two observers. Our results show that although multiple observers perform better against these schemes than single observers, multimodal schemes are significantly more secure against multiple observers compared to schemes that employ a single modality. We discuss how this threat model impacts the design of authentication schemes

    Personal rights management (PRM) : enabling privacy rights in digital online media content

    Get PDF
    With ubiquitous use of digital camera devices, especially in mobile phones, privacy is no longer threatened by governments and companies only. The new technology creates a new threat by ordinary people, who now have the means to take and distribute pictures of one’s face at no risk and little cost in any situation in public and private spaces. Fast distribution via web based photo albums, online communities and web pages expose an individual’s private life to the public in unpreceeded ways. Social and legal measures are increasingly taken to deal with this problem. In practice however, they lack efficiency, as they are hard to enforce in practice. In this paper, we discuss a supportive infrastructure aiming for the distribution channel; as soon as the picture is publicly available, the exposed individual has a chance to find it and take proper action.Wir stellen ein System zur Wahrnehmung des Rechts am eigenen Bild bei der Veröffentlichung digitaler Fotos, zum Beispiel von Handykameras, im Internet vor. Zur Entdeckung der Veröffentlichung schlagen wir ein Watermarking-Verfahren vor, welches das Auffinden der Bilder durch die potentiell abgebildeten Personen ermöglicht, ohne die Rechte des Fotografen einzuschränken
    • …
    corecore