10,675 research outputs found

    Protecting private information for two classes of aggregated database queries

    Get PDF
    An important direction of informatics is devoted to the protection of privacy of confidential information while providing answers to aggregated queries that can be used for analysis of data. Protecting privacy is especially important when aggregated queries are used to combine personal information stored in several databases that belong to different owners or come from different sources. Malicious attackers may be able to infer confidential information even from aggregated numerical values returned as answers to queries over large collections of data. Formal proofs of security guarantees are important, because they can be used for implementing practical systems protecting privacy and providing answers to aggregated queries. The investigation of formal conditions which guarantee protection of private information against inference attacks originates from a fundamental result obtained by Chin and Ozsoyoglu in 1982 for linear queries. The present paper solves similar problems for two new classes of aggregated nonlinear queries. We obtain complete descriptions of conditions, which guarantee the protection of privacy of confidential information against certain possible inference attacks, if a collection of queries of this type are answered. Rigorous formal security proofs are given which guarantee that the conditions obtained ensure the preservation of privacy of confidential data. In addition, we give necessary and sufficient conditions for the protection of confidential information from special inference attacks aimed at achieving a group compromise

    Autonomic computing architecture for SCADA cyber security

    Get PDF
    Cognitive computing relates to intelligent computing platforms that are based on the disciplines of artificial intelligence, machine learning, and other innovative technologies. These technologies can be used to design systems that mimic the human brain to learn about their environment and can autonomously predict an impending anomalous situation. IBM first used the term ‘Autonomic Computing’ in 2001 to combat the looming complexity crisis (Ganek and Corbi, 2003). The concept has been inspired by the human biological autonomic system. An autonomic system is self-healing, self-regulating, self-optimising and self-protecting (Ganek and Corbi, 2003). Therefore, the system should be able to protect itself against both malicious attacks and unintended mistakes by the operator

    Resisting tracker attacks by query terms analysis

    Get PDF
    Tracker attacks pose a serious threat to databases, especially those used in manufactory and management in industry. These attacks can be used to infer sensitive information in databases and they are difficult to detect. This paper proposes a new approach to dealing with such attacks by analysing each disjunctive term in every query statement. Potential tracker attacks will be detected and then suppressed to avoid any further real attacks. A sample database table and a sample attack are given and analysed to show the effectiveness of the new approach

    Privacy Games: Optimal User-Centric Data Obfuscation

    Full text link
    In this paper, we design user-centric obfuscation mechanisms that impose the minimum utility loss for guaranteeing user's privacy. We optimize utility subject to a joint guarantee of differential privacy (indistinguishability) and distortion privacy (inference error). This double shield of protection limits the information leakage through obfuscation mechanism as well as the posterior inference. We show that the privacy achieved through joint differential-distortion mechanisms against optimal attacks is as large as the maximum privacy that can be achieved by either of these mechanisms separately. Their utility cost is also not larger than what either of the differential or distortion mechanisms imposes. We model the optimization problem as a leader-follower game between the designer of obfuscation mechanism and the potential adversary, and design adaptive mechanisms that anticipate and protect against optimal inference algorithms. Thus, the obfuscation mechanism is optimal against any inference algorithm

    Privacy in the Genomic Era

    Get PDF
    Genome sequencing technology has advanced at a rapid pace and it is now possible to generate highly-detailed genotypes inexpensively. The collection and analysis of such data has the potential to support various applications, including personalized medical services. While the benefits of the genomics revolution are trumpeted by the biomedical community, the increased availability of such data has major implications for personal privacy; notably because the genome has certain essential features, which include (but are not limited to) (i) an association with traits and certain diseases, (ii) identification capability (e.g., forensics), and (iii) revelation of family relationships. Moreover, direct-to-consumer DNA testing increases the likelihood that genome data will be made available in less regulated environments, such as the Internet and for-profit companies. The problem of genome data privacy thus resides at the crossroads of computer science, medicine, and public policy. While the computer scientists have addressed data privacy for various data types, there has been less attention dedicated to genomic data. Thus, the goal of this paper is to provide a systematization of knowledge for the computer science community. In doing so, we address some of the (sometimes erroneous) beliefs of this field and we report on a survey we conducted about genome data privacy with biomedical specialists. Then, after characterizing the genome privacy problem, we review the state-of-the-art regarding privacy attacks on genomic data and strategies for mitigating such attacks, as well as contextualizing these attacks from the perspective of medicine and public policy. This paper concludes with an enumeration of the challenges for genome data privacy and presents a framework to systematize the analysis of threats and the design of countermeasures as the field moves forward

    Privacy and Confidentiality in an e-Commerce World: Data Mining, Data Warehousing, Matching and Disclosure Limitation

    Full text link
    The growing expanse of e-commerce and the widespread availability of online databases raise many fears regarding loss of privacy and many statistical challenges. Even with encryption and other nominal forms of protection for individual databases, we still need to protect against the violation of privacy through linkages across multiple databases. These issues parallel those that have arisen and received some attention in the context of homeland security. Following the events of September 11, 2001, there has been heightened attention in the United States and elsewhere to the use of multiple government and private databases for the identification of possible perpetrators of future attacks, as well as an unprecedented expansion of federal government data mining activities, many involving databases containing personal information. We present an overview of some proposals that have surfaced for the search of multiple databases which supposedly do not compromise possible pledges of confidentiality to the individuals whose data are included. We also explore their link to the related literature on privacy-preserving data mining. In particular, we focus on the matching problem across databases and the concept of ``selective revelation'' and their confidentiality implications.Comment: Published at http://dx.doi.org/10.1214/088342306000000240 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Exploring personalized life cycle policies

    Get PDF
    Ambient Intelligence imposes many challenges in protecting people's privacy. Storing privacy-sensitive data permanently will inevitably result in privacy violations. Limited retention techniques might prove useful in order to limit the risks of unwanted and irreversible disclosure of privacy-sensitive data. To overcome the rigidness of simple limited retention policies, Life-Cycle policies more precisely describe when and how data could be first degraded and finally be destroyed. This allows users themselves to determine an adequate compromise between privacy and data retention. However, implementing and enforcing these policies is a difficult problem. Traditional databases are not designed or optimized for deleting data. In this report, we recall the formerly introduced life cycle policy model and the already developed techniques for handling a single collective policy for all data in a relational database management system. We identify the problems raised by loosening this single policy constraint and propose preliminary techniques for concurrently handling multiple policies in one data store. The main technical consequence for the storage structure is, that when allowing multiple policies, the degradation order of tuples will not always be equal to the insert order anymore. Apart from the technical aspects, we show that personalizing the policies introduces some inference breaches which have to be further investigated. To make such an investigation possible, we introduce a metric for privacy, which enables the possibility to compare the provided amount of privacy with the amount of privacy required by the policy
    • …
    corecore