13,687 research outputs found

    User's Privacy in Recommendation Systems Applying Online Social Network Data, A Survey and Taxonomy

    Full text link
    Recommender systems have become an integral part of many social networks and extract knowledge from a user's personal and sensitive data both explicitly, with the user's knowledge, and implicitly. This trend has created major privacy concerns as users are mostly unaware of what data and how much data is being used and how securely it is used. In this context, several works have been done to address privacy concerns for usage in online social network data and by recommender systems. This paper surveys the main privacy concerns, measurements and privacy-preserving techniques used in large-scale online social networks and recommender systems. It is based on historical works on security, privacy-preserving, statistical modeling, and datasets to provide an overview of the technical difficulties and problems associated with privacy preserving in online social networks.Comment: 26 pages, IET book chapter on big data recommender system

    Preserving Link Privacy in Social Network Based Systems

    Full text link
    A growing body of research leverages social network based trust relationships to improve the functionality of the system. However, these systems expose users' trust relationships, which is considered sensitive information in today's society, to an adversary. In this work, we make the following contributions. First, we propose an algorithm that perturbs the structure of a social graph in order to provide link privacy, at the cost of slight reduction in the utility of the social graph. Second we define general metrics for characterizing the utility and privacy of perturbed graphs. Third, we evaluate the utility and privacy of our proposed algorithm using real world social graphs. Finally, we demonstrate the applicability of our perturbation algorithm on a broad range of secure systems, including Sybil defenses and secure routing.Comment: 16 pages, 15 figure

    Privacy Preserving Data Publishing

    Get PDF
    Recent years have witnessed increasing interest among researchers in protecting individual privacy in the big data era, involving social media, genomics, and Internet of Things. Recent studies have revealed numerous privacy threats and privacy protection methodologies, that vary across a broad range of applications. To date, however, there exists no powerful methodologies in addressing challenges from: high-dimension data, high-correlation data and powerful attackers. In this dissertation, two critical problems will be investigated: the prospects and some challenges for elucidating the attack capabilities of attackers in mining individuals’ private information; and methodologies that can be used to protect against such inference attacks, while guaranteeing significant data utility. First, this dissertation has proposed a series of works regarding inference attacks laying emphasis on protecting against powerful adversaries with auxiliary information. In the context of genomic data, data dimensions and computation feasibility is highly challenging in conducting data analysis. This dissertation proved that the proposed attack can effectively infer the values of the unknown SNPs and traits in linear complexity, which dramatically improve the computation cost compared with traditional methods with exponential computation cost. Second, putting differential privacy guarantee into high-dimension and high-correlation data remains a challenging problem, due to high-sensitivity, output scalability and signal-to-noise ratio. Consider there are tens-of-millions of genomes in a human DNA, it is infeasible for traditional methods to introduce noise to sanitize genomic data. This dissertation has proposed a series of works and demonstrated that the proposed differentially private method satisfies differential privacy; moreover, data utility is improved compared with the states of the arts by largely lowering data sensitivity. Third, putting privacy guarantee into social data publishing remains a challenging problem, due to tradeoff requirements between data privacy and utility. This dissertation has proposed a series of works and demonstrated that the proposed methods can effectively realize privacy-utility tradeoff in data publishing. Finally, two future research topics are proposed. The first topic is about Privacy Preserving Data Collection and Processing for Internet of Things. The second topic is to study Privacy Preserving Big Data Aggregation. They are motivated by the newly proposed data mining, artificial intelligence and cybersecurity methods
    • …
    corecore