2,171 research outputs found

    Towards Loop-Free Forwarding of Anonymous Internet Datagrams that Enforce Provenance

    Full text link
    The way in which addressing and forwarding are implemented in the Internet constitutes one of its biggest privacy and security challenges. The fact that source addresses in Internet datagrams cannot be trusted makes the IP Internet inherently vulnerable to DoS and DDoS attacks. The Internet forwarding plane is open to attacks to the privacy of datagram sources, because source addresses in Internet datagrams have global scope. The fact an Internet datagrams are forwarded based solely on the destination addresses stated in datagram headers and the next hops stored in the forwarding information bases (FIB) of relaying routers allows Internet datagrams to traverse loops, which wastes resources and leaves the Internet open to further attacks. We introduce PEAR (Provenance Enforcement through Addressing and Routing), a new approach for addressing and forwarding of Internet datagrams that enables anonymous forwarding of Internet datagrams, eliminates many of the existing DDoS attacks on the IP Internet, and prevents Internet datagrams from looping, even in the presence of routing-table loops.Comment: Proceedings of IEEE Globecom 2016, 4-8 December 2016, Washington, D.C., US

    IP Fast Reroute with Remote Loop-Free Alternates: the Unit Link Cost Case

    Get PDF
    Up to not so long ago, Loop-Free Alternates (LFA) was the only viable option for providing fast protection in pure IP and MPLS/LDP networks. Unfortunately, LFA cannot provide protection for all possible failure cases in general. Recently, the IETF has initiated the Remote Loop-Free Alternates (rLFA) technique, as a simple extension to LFA, to boost the fraction of failure cases covered by fast protection. Before further stan- dardization and deployment, however, it is crucial to determine to what extent rLFA can improve the level of protection in a general IP network, as well as to find optimization methods to tweak a network for 100% rLFA coverage. In this paper, we take the first steps towards this goal by solving these problems in the special, but practically relevant, case when each network link is of unit cost. We also provide preliminary numerical evaluations conducted on real IP network topologies, which suggest that rLFA significantly improves the level of protection, and most networks need only 2 − 3 new links to be added to attain 100% failure case coverage

    Backscatter from the Data Plane --- Threats to Stability and Security in Information-Centric Networking

    Full text link
    Information-centric networking proposals attract much attention in the ongoing search for a future communication paradigm of the Internet. Replacing the host-to-host connectivity by a data-oriented publish/subscribe service eases content distribution and authentication by concept, while eliminating threats from unwanted traffic at an end host as are common in today's Internet. However, current approaches to content routing heavily rely on data-driven protocol events and thereby introduce a strong coupling of the control to the data plane in the underlying routing infrastructure. In this paper, threats to the stability and security of the content distribution system are analyzed in theory and practical experiments. We derive relations between state resources and the performance of routers and demonstrate how this coupling can be misused in practice. We discuss new attack vectors present in its current state of development, as well as possibilities and limitations to mitigate them.Comment: 15 page

    FAIR: Forwarding Accountability for Internet Reputability

    Full text link
    This paper presents FAIR, a forwarding accountability mechanism that incentivizes ISPs to apply stricter security policies to their customers. The Autonomous System (AS) of the receiver specifies a traffic profile that the sender AS must adhere to. Transit ASes on the path mark packets. In case of traffic profile violations, the marked packets are used as a proof of misbehavior. FAIR introduces low bandwidth overhead and requires no per-packet and no per-flow state for forwarding. We describe integration with IP and demonstrate a software switch running on commodity hardware that can switch packets at a line rate of 120 Gbps, and can forward 140M minimum-sized packets per second, limited by the hardware I/O subsystem. Moreover, this paper proposes a "suspicious bit" for packet headers - an application that builds on top of FAIR's proofs of misbehavior and flags packets to warn other entities in the network.Comment: 16 pages, 12 figure

    Maximum Production Of Transmission Messages Rate For Service Discovery Protocols

    Get PDF
    Minimizing the number of dropped User Datagram Protocol (UDP) messages in a network is regarded as a challenge by researchers. This issue represents serious problems for many protocols particularly those that depend on sending messages as part of their strategy, such us service discovery protocols. This paper proposes and evaluates an algorithm to predict the minimum period of time required between two or more consecutive messages and suggests the minimum queue sizes for the routers, to manage the traffic and minimise the number of dropped messages that has been caused by either congestion or queue overflow or both together. The algorithm has been applied to the Universal Plug and Play (UPnP) protocol using ns2 simulator. It was tested when the routers were connected in two configurations; as a centralized and de centralized. The message length and bandwidth of the links among the routers were taken in the consideration. The result shows Better improvement in number of dropped messages `among the routers
    • …
    corecore