5,634 research outputs found

    Location Privacy Protection in the Mobile Era and Beyond

    Full text link
    As interconnected devices become embedded in every aspect of our lives, they accompany many privacy risks. Location privacy is one notable case, consistently recording an individual’s location might lead to his/her tracking, fingerprinting and profiling. An individual’s location privacy can be compromised when tracked by smartphone apps, in indoor spaces, and/or through Internet of Things (IoT) devices. Recent surveys have indicated that users genuinely value their location privacy and would like to exercise control over who collects and processes their location data. They, however, lack the effective and practical tools to protect their location privacy. An effective location privacy protection mechanism requires real understanding of the underlying threats, and a practical one requires as little changes to the existing ecosystems as possible while ensuring psychological acceptability to the users. This thesis addresses this problem by proposing a suite of effective and practical privacy preserving mechanisms that address different aspects of real-world location privacy threats. First, we present LP-Guardian, a comprehensive framework for location privacy protection for Android smartphone users. LP-Guardian overcomes the shortcomings of existing approaches by addressing the tracking, profiling, and fingerprinting threats posed by different mobile apps while maintaining their functionality. LP-Guardian requires modifying the underlying platform of the mobile operating system, but no changes in either the apps or service provider. We then propose LP-Doctor, a light-weight user-level tool which allows Android users to effectively utilize the OS’s location access controls. As opposed to LP-Guardian, LP-Doctor requires no platform changes. It builds on a two year data collection campaign in which we analyzed the location privacy threats posed by 1160 apps for 100 users. For the case of indoor location tracking, we present PR-LBS (Privacy vs. Reward for Location-Based Service), a system that balances the users’ privacy concerns and the benefits of sharing location data in indoor location tracking environments. PR-LBS fits within the existing indoor localization ecosystem whether it is infrastructure-based or device-based. Finally, we target the privacy threats originating from the IoT devices that employ the emerging Bluetooth Low Energy (BLE) protocol through BLE-Guardian. BLE-Guardian is a device agnostic system that prevents user tracking and profiling while securing access to his/her BLE-powered devices. We evaluate BLE-Guardian in real-world scenarios and demonstrate its effectiveness in protecting the user along with its low overhead on the user’s devices.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/138563/1/kmfawaz_1.pd

    ConXsense - Automated Context Classification for Context-Aware Access Control

    Full text link
    We present ConXsense, the first framework for context-aware access control on mobile devices based on context classification. Previous context-aware access control systems often require users to laboriously specify detailed policies or they rely on pre-defined policies not adequately reflecting the true preferences of users. We present the design and implementation of a context-aware framework that uses a probabilistic approach to overcome these deficiencies. The framework utilizes context sensing and machine learning to automatically classify contexts according to their security and privacy-related properties. We apply the framework to two important smartphone-related use cases: protection against device misuse using a dynamic device lock and protection against sensory malware. We ground our analysis on a sociological survey examining the perceptions and concerns of users related to contextual smartphone security and analyze the effectiveness of our approach with real-world context data. We also demonstrate the integration of our framework with the FlaskDroid architecture for fine-grained access control enforcement on the Android platform.Comment: Recipient of the Best Paper Awar

    Intrusion Detection Systems for Community Wireless Mesh Networks

    Get PDF
    Wireless mesh networks are being increasingly used to provide affordable network connectivity to communities where wired deployment strategies are either not possible or are prohibitively expensive. Unfortunately, computer networks (including mesh networks) are frequently being exploited by increasingly profit-driven and insidious attackers, which can affect their utility for legitimate use. In response to this, a number of countermeasures have been developed, including intrusion detection systems that aim to detect anomalous behaviour caused by attacks. We present a set of socio-technical challenges associated with developing an intrusion detection system for a community wireless mesh network. The attack space on a mesh network is particularly large; we motivate the need for and describe the challenges of adopting an asset-driven approach to managing this space. Finally, we present an initial design of a modular architecture for intrusion detection, highlighting how it addresses the identified challenges
    • 

    corecore