8,016 research outputs found

    IoT-Based Multi-Dimensional Chaos Mapping System for Secure and Fast Transmission of Visual Data in Smart Cities

    Get PDF
    A “smart city” sends data from many sensors to a cloud server for local authorities and the public to connect. Smart city residents communicate mostly through images and videos. Many image security algorithms have been proposed to improve locals’ lives, but a high-class redundancy method with a small space requirement is still needed to acquire and protect this sensitive data. This paper proposes an IoT-based multi-dimensional chaos mapping system for secure and fast transmission of visual data in smart cities, which uses the five dimensional Gauss Sine Logistic system to generate hyper-chaotic sequences to encrypt images. The proposed method also uses pixel position permutation and Singular Value Decomposition with Discrete fractional cosine transform to compress and protect the sensitive image data. To increase security, we use a chaotic system to construct the chaotic sequences and a diffusion matrix. Furthermore, numerical simulation results and theoretical evaluations validate the suggested scheme’s security and efficacy after compression encryption.publishedVersio

    Hybrid chaos-based image encryption algorithm using Chebyshev chaotic map with deoxyribonucleic acid sequence and its performance evaluation

    Get PDF
    The media content shared on the internet has increased tremendously nowadays. The streaming service has major role in contributing to internet traffic all over the world. As the major content shared are in the form of images and rapid increase in computing power a better and complex encryption standard is needed to protect this data from being leaked to unauthorized person. Our proposed system makes use of chaotic maps, deoxyribonucleic acid (DNA) coding and ribonucleic acid (RNA) coding technique to encrypt the image. As videos are nothing but collection of images played at the rate of minimum 30 frames/images per second, this methodology can also be used to encrypt videos. The complexity and dynamic nature of chaotic systems makes decryption of content by unauthorized personal difficult. The hybrid usage of chaotic systems along with DNA and RNA sequencing improves the encryption efficiency of the algorithm and also makes it possible to decrypt the images at the same time without consuming too much of computation power

    A DNA Based Colour Image Encryption Scheme Using A Convolutional Autoencoder

    Full text link
    With the advancement in technology, digital images can easily be transmitted and stored over the Internet. Encryption is used to avoid illegal interception of digital images. Encrypting large-sized colour images in their original dimension generally results in low encryption/decryption speed along with exerting a burden on the limited bandwidth of the transmission channel. To address the aforementioned issues, a new encryption scheme for colour images employing convolutional autoencoder, DNA and chaos is presented in this paper. The proposed scheme has two main modules, the dimensionality conversion module using the proposed convolutional autoencoder, and the encryption/decryption module using DNA and chaos. The dimension of the input colour image is first reduced from N ×\times M ×\times 3 to P ×\times Q gray-scale image using the encoder. Encryption and decryption are then performed in the reduced dimension space. The decrypted gray-scale image is upsampled to obtain the original colour image having dimension N ×\times M ×\times 3. The training and validation accuracy of the proposed autoencoder is 97% and 95%, respectively. Once the autoencoder is trained, it can be used to reduce and subsequently increase the dimension of any arbitrary input colour image. The efficacy of the designed autoencoder has been demonstrated by the successful reconstruction of the compressed image into the original colour image with negligible perceptual distortion. The second major contribution presented in this paper is an image encryption scheme using DNA along with multiple chaotic sequences and substitution boxes. The security of the proposed image encryption algorithm has been gauged using several evaluation parameters, such as histogram of the cipher image, entropy, NPCR, UACI, key sensitivity, contrast, etc. encryption

    Medical image encryption techniques: a technical survey and potential challenges

    Get PDF
    Among the most sensitive and important data in telemedicine systems are medical images. It is necessary to use a robust encryption method that is resistant to cryptographic assaults while transferring medical images over the internet. Confidentiality is the most crucial of the three security goals for protecting information systems, along with availability, integrity, and compliance. Encryption and watermarking of medical images address problems with confidentiality and integrity in telemedicine applications. The need to prioritize security issues in telemedicine applications makes the choice of a trustworthy and efficient strategy or framework all the more crucial. The paper examines various security issues and cutting-edge methods to secure medical images for use with telemedicine systems

    Video Encryption Technique Based on Hybrid Chaotic Maps and Multi- Operation keys

    Get PDF
    During these critical times of the pandemic, a reliable and fast encryption technique for encrypting medical data for patients is a critical topic to consider. This epidemic forced governments and health care organizations to observe patients of COVID-19. The idea of encryption video is gaining in popularity, because of the growing use of communication technology like video conferencing to conclude corporate meetings and presentations. Video data sent back and forth between sender and recipient must also use the unsecured communication medium available, the internet. This paper proposed a way to encrypt video by using hybrid schemes, which used the advantage of both henon, elliptic curve, and logistic. The proposed method achieved significantly improved results. Simulations results are performed to gauge the efficacy of the presented method

    Color Image Encryption using Chaotic Algorithm and 2D Sin-Cos Henon Map for High Security

    Get PDF
    In every form of electronic communication, data security must be an absolute top priority. As the prevalence of Internet and other forms of electronic communication continues to expand, so too does the need for visual content. There are numerous options for protecting transmitted data. It's important that the transmission of hidden messages in images remain unnoticed to avoid raising any red flags. In this paper, we propose a new deep learning-based image encryption algorithm for safe image retrieval. The proposed algorithm employs a deep artificial neural network model to extract features via sample training, allowing for more secure image network transmission. The algorithm is incorporated into a deep learning-based image retrieval process with Convolution Neural Networks(CNN), improving the efficiency of retrieval while also guaranteeing the security of ciphertext images. Experiments conducted on five different datasets demonstrate that the proposed algorithm vastly improves retrieval efficiency and strengthens data security. Also hypothesised a 2D Sin-Cos-Henon (2D-SCH)-based encryption algorithm for highly secure colour images. We demonstrate that this algorithm is secure against a variety of attacks and that it can encrypt all three colour channels of an image simultaneously

    Predicting recovery following stroke: deep learning, multimodal data and feature selection using explainable AI

    Full text link
    Machine learning offers great potential for automated prediction of post-stroke symptoms and their response to rehabilitation. Major challenges for this endeavour include the very high dimensionality of neuroimaging data, the relatively small size of the datasets available for learning, and how to effectively combine neuroimaging and tabular data (e.g. demographic information and clinical characteristics). This paper evaluates several solutions based on two strategies. The first is to use 2D images that summarise MRI scans. The second is to select key features that improve classification accuracy. Additionally, we introduce the novel approach of training a convolutional neural network (CNN) on images that combine regions-of-interest extracted from MRIs, with symbolic representations of tabular data. We evaluate a series of CNN architectures (both 2D and a 3D) that are trained on different representations of MRI and tabular data, to predict whether a composite measure of post-stroke spoken picture description ability is in the aphasic or non-aphasic range. MRI and tabular data were acquired from 758 English speaking stroke survivors who participated in the PLORAS study. The classification accuracy for a baseline logistic regression was 0.678 for lesion size alone, rising to 0.757 and 0.813 when initial symptom severity and recovery time were successively added. The highest classification accuracy 0.854 was observed when 8 regions-of-interest was extracted from each MRI scan and combined with lesion size, initial severity and recovery time in a 2D Residual Neural Network.Our findings demonstrate how imaging and tabular data can be combined for high post-stroke classification accuracy, even when the dataset is small in machine learning terms. We conclude by proposing how the current models could be improved to achieve even higher levels of accuracy using images from hospital scanners
    corecore