1,194 research outputs found

    Safeguarding health data with enhanced accountability and patient awareness

    Get PDF
    Several factors are driving the transition from paper-based health records to electronic health record systems. In the United States, the adoption rate of electronic health record systems significantly increased after "Meaningful Use" incentive program was started in 2009. While increased use of electronic health record systems could improve the efficiency and quality of healthcare services, it can also lead to a number of security and privacy issues, such as identity theft and healthcare fraud. Such incidents could have negative impact on trustworthiness of electronic health record technology itself and thereby could limit its benefits. In this dissertation, we tackle three challenges that we believe are important to improve the security and privacy in electronic health record systems. Our approach is based on an analysis of real-world incidents, namely theft and misuse of patient identity, unauthorized usage and update of electronic health records, and threats from insiders in healthcare organizations. Our contributions include design and development of a user-centric monitoring agent system that works on behalf of a patient (i.e., an end user) and securely monitors usage of the patient's identity credentials as well as access to her electronic health records. Such a monitoring agent can enhance patient's awareness and control and improve accountability for health records even in a distributed, multi-domain environment, which is typical in an e-healthcare setting. This will reduce the risk and loss caused by misuse of stolen data. In addition to the solution from a patient's perspective, we also propose a secure system architecture that can be used in healthcare organizations to enable robust auditing and management over client devices. This helps us further enhance patients' confidence in secure use of their health data.PhDCommittee Chair: Mustaque Ahamad; Committee Member: Douglas M. Blough; Committee Member: Ling Liu; Committee Member: Mark Braunstein; Committee Member: Wenke Le

    Cyber-Vulnerabilities & Public Health Emergency Response

    Get PDF

    Bring Your Own Device (BYOD): Risks to Adopters and Users

    Get PDF
    Bring your own device (BYOD) policy refers to a set of regulation broadly adopted by organizations that allows employee-owned mobile devices – like as laptops, smartphones, personal digital assistant and tablets – to the office for use and connection to the organizations IT infrastructure. BYOD offers numerous benefits ranging from plummeting organizational logistic cost, access to information at any time and boosting employee’s productivity. On the contrary, this concept presents various safety issues and challenges because of its characteristic security requirements. This study explored diverse literature databases to identify and classify BYOD policy adoption issues, possible control measures and guidelines that could hypothetically inform organizations and users that adopt and implement BYOD policy. The literature domain search yielded 110 articles, 26 of them were deemed to have met the inclusion standards. In this paper, a list of possible threats/vulnerabilities of BYOD adoption were identified. This investigation also identified and classified the impact of the threats/vulnerabilities on BYOD layered components according to security standards of “FIPS Publication 199” for classification. Finally, a checklist of measures that could be applied by organizations & users to mitigate BYOD vulnerabilities using a set layered approach of data, device, applications, and people were recommended

    CYBERSECURITY IN THE HEALTHCARE ENVIRONMENT

    Get PDF
    Abstract In 1990 the online world began to take shape when Tim Berners-Lee invented the World Wide Web. Almost simultaneously, cybersecurity was birthed to protect and minimize the various threats including but not limited to worms, viruses, and data breaches. Cybersecurity includes the various technologies, equipment both hardware and software, processes, and procedures that are used to guard against unauthorized attacks or access to protected information. This paper will focus on cybersecurity as it relates to the healthcare environment. Every department in a healthcare facility is responsible for taking care of patients. This should be their number one priority and information technology is no exception. While IT staff most likely do not provide hands on care to patients, they go to great lengths to protect their personal health information. In a healthcare environment, there are numerous departments such as Lab, Radiology, and Pharmacy etc. that need to have integrated systems. These systems must also be able to reach the internet and often be accessible to outside/non-employed vendors for support and maintenance. Also, communication among employees and with the outside world is a must. Email, video conferencing, desktop sharing, and faxing are all used thousands of times a day. It is imperative that cybersecurity be a top priority and everyone holds himself or herself responsible for protecting the systems that allow staff to take care of their patients

    IoT Health Devices: Exploring Security Risks in the Connected Landscape

    Get PDF
    The concept of the Internet of Things (IoT) spans decades, and the same can be said for its inclusion in healthcare. The IoT is an attractive target in medicine; it offers considerable potential in expanding care. However, the application of the IoT in healthcare is fraught with an array of challenges, and also, through it, numerous vulnerabilities that translate to wider attack surfaces and deeper degrees of damage possible to both consumers and their confidence within health systems, as a result of patient-specific data being available to access. Further, when IoT health devices (IoTHDs) are developed, a diverse range of attacks are possible. To understand the risks in this new landscape, it is important to understand the architecture of IoTHDs, operations, and the social dynamics that may govern their interactions. This paper aims to document and create a map regarding IoTHDs, lay the groundwork for better understanding security risks in emerging IoTHD modalities through a multi-layer approach, and suggest means for improved governance and interaction. We also discuss technological innovations expected to set the stage for novel exploits leading into the middle and latter parts of the 21st century

    Fog computing security: a review of current applications and security solutions

    Get PDF
    Fog computing is a new paradigm that extends the Cloud platform model by providing computing resources on the edges of a network. It can be described as a cloud-like platform having similar data, computation, storage and application services, but is fundamentally different in that it is decentralized. In addition, Fog systems are capable of processing large amounts of data locally, operate on-premise, are fully portable, and can be installed on heterogeneous hardware. These features make the Fog platform highly suitable for time and location-sensitive applications. For example, Internet of Things (IoT) devices are required to quickly process a large amount of data. This wide range of functionality driven applications intensifies many security issues regarding data, virtualization, segregation, network, malware and monitoring. This paper surveys existing literature on Fog computing applications to identify common security gaps. Similar technologies like Edge computing, Cloudlets and Micro-data centres have also been included to provide a holistic review process. The majority of Fog applications are motivated by the desire for functionality and end-user requirements, while the security aspects are often ignored or considered as an afterthought. This paper also determines the impact of those security issues and possible solutions, providing future security-relevant directions to those responsible for designing, developing, and maintaining Fog systems

    Usability and Security in Medication. Administration Applications

    Get PDF
    The traditional process of filling the medicine trays and dispensing the medicines to the patients in the hospitals is manually done by reading the printed paper medicinechart. This process can be very strenuous and error-prone, given the number of sub-tasksinvolved in the entire workflow and the dynamic nature of the work environment.Therefore, efforts are being made to digitalise the medication dispensation process byintroducing a mobile application called Smart Dosing application. The introduction ofthe Smart Dosing application into hospital workflow raises security concerns and callsfor security requirement analysis. This thesis is written as a part of the smart medication management project at EmbeddedSystems Laboratory, A˚bo Akademi University. The project aims at digitising the medicine dispensation process by integrating information from various health systems, and making them available through the Smart Dosing application. This application is intended to be used on a tablet computer which will be incorporated on the medicine tray. The smart medication management system include the medicine tray, the tablet device, and the medicine cups with the cup holders. Introducing the Smart Dosing application should not interfere with the existing process carried out by the nurses, and it should result in minimum modifications to the tray design and the workflow. The re-designing of the tray would include integrating the device running the application into the tray in a manner that the users find it convenient and make less errors while using it. The main objective of this thesis is to enhance the security of the hospital medicine dispensation process by ensuring the security of the Smart Dosing application at various levels. The methods used for writing this thesis was to analyse how the tray design, and the application user interface design can help prevent errors and what secure technology choices have to be made before starting the development of the next prototype of the Smart Dosing application. The thesis first understands the context of the use of the application, the end-users and their needs, and the errors made in everyday medication dispensation workflow by continuous discussions with the nursing researchers. The thesis then gains insight to the vulnerabilities, threats and risks of using mobile application in hospital medication dispensation process. The resulting list of security requirements was made by analysing the previously built prototype of the Smart Dosing application, continuous interactive discussions with the nursing researchers, and an exhaustive state-of-the-art study on security risks of using mobile applications in hospital context. The thesis also uses Octave Allegro method to make the readers understand the likelihood and impact of threats, and what steps should be taken to prevent or fix them. The security requirements obtained, as a result, are a starting point for the developers of the next iteration of the prototype for the Smart Dosing application.Siirretty Doriast

    Safeguarding Against Data Breaches

    Get PDF
    Reports of data breaches have seen an increase in the past decade and compared to other businesses; these breaches are estimated to be the most expensive in healthcare and affect millions of patients. One may ask what is a data breach, what causes it, and how can it be prevented? Particularly vulnerable to breaches is Protected Health Information (PHI) collected by the healthcare provider. This information is any part of the patient’s medical record or payment history. Regularly, healthcare organizations utilize business associates and covered entities to deliver patient care. During this process, PHI is produced. This study addresses the obligations that business associates and covered entities have toward protecting patient information, the leading cause of breaches: hacking, medical identity theft, and unauthorized access to records, and what measures we will use to protect against such infringements

    Robust and Reliable Security Approach for IoMT: Detection of DoS and Delay Attacks through a High-Accuracy Machine Learning Model

    Get PDF
    Internet of Medical Things (IoMT ) refers to the network of medical devices and healthcare systems that are connected to the internet. However, this connectivity also makes IoMT vulnerable to cyberattacks such as DoS and Delay attacks , posing risks to patient safety, data security, and public trust. Early detection of these attacks is crucial to prevent harm to patients and system malfunctions. In this paper, we address the detection and mitigation of DoS and Delay attacks in the IoMT using machine learning techniques. To achieve this objective, we constructed an IoMT network scenario using Omnet++ and recorded network traffic data. Subsequently, we utilized this data to train a set of common machine learning algorithms. Additionally, we proposed an Enhanced Random Forest Classifier for Achieving the Best Execution Time (ERF-ABE), which aims to achieve high accuracy and sensitivity as well as  low execution time for detecting these types of attacks in IoMT networks. This classifier combines the strengths of random forests with optimization techniques to enhance performance. Based on the results, the execution time has been reduced by implementing ERF-ABE, while maintaining high levels of accuracy and sensitivity
    corecore