42,467 research outputs found

    A modern vision of simulation modelling in mining and near mining activity

    Get PDF
    The paper represents the creation of the software simulation system, which reproduce the basic processes of mining and near production. It presents the consideration of such systems for both traditional and non-traditional mineral extraction systems. The principles of using computer recognition of processes are also presented in other processes of carbon-containing raw materials transition, as well as power production and waste utilization of mining production. These systems considerably expand the manageability of a rather complicated mining enterprise. The main purpose of such research is the simulation reproduction of all technological processors associated with the activity of mining enterprises on the display of the dispatch center. For this purpose, is used so-called UML-diagrams, which allows to simulate mining and near mining processes. Results of this investigation were included to the Roman Dychkovskyi thesis of the scientific degree of the Doctor of the Technique Sciences β€œScientific Principles of Technologies Combination for Coal Mining in Weakly Metamorphoses Rockmass”

    Separating Agent-Functioning and Inter-Agent Coordination by Activated Modules: The DECOMAS Architecture

    Full text link
    The embedding of self-organizing inter-agent processes in distributed software applications enables the decentralized coordination system elements, solely based on concerted, localized interactions. The separation and encapsulation of the activities that are conceptually related to the coordination, is a crucial concern for systematic development practices in order to prepare the reuse and systematic integration of coordination processes in software systems. Here, we discuss a programming model that is based on the externalization of processes prescriptions and their embedding in Multi-Agent Systems (MAS). One fundamental design concern for a corresponding execution middleware is the minimal-invasive augmentation of the activities that affect coordination. This design challenge is approached by the activation of agent modules. Modules are converted to software elements that reason about and modify their host agent. We discuss and formalize this extension within the context of a generic coordination architecture and exemplify the proposed programming model with the decentralized management of (web) service infrastructures

    Software Engineering as Instrumentation for the Long Tail of Scientific Software

    Full text link
    The vast majority of the long tail of scientific software, the myriads of tools that implement the many analysis and visualization methods for different scientific fields, is highly specialized, purpose-built for a research project, and has to rely on community uptake and reuse for its continued development and maintenance. Although uptake cannot be controlled over even guaranteed, some of the key factors that influence whether new users or developers decide to adopt an existing tool or start a new one are about how easy or difficult it is to use or enhance a tool for a purpose for which it was not originally designed. The science of software engineering has produced techniques and practices that would reduce or remove a variety of barriers to community uptake of software, but for a variety of reasons employing trained software engineers as part of the development of long tail scientific software has proven to be challenging. As a consequence, community uptake of long tail tools is often far more difficult than it would need to be, even though opportunities for reuse abound. We discuss likely reasons why employing software engineering in the long tail is challenging, and propose that many of those obstacles could be addressed in the form of a cross-cutting non-profit center of excellence that makes software engineering broadly accessible as a shared service, conceptually and in its effect similar to shared instrumentation.Comment: 4 page

    Development of the Integrated Model of the Automotive Product Quality Assessment

    Get PDF
    Issues on building an integrated model of the automotive product quality assessment are studied herein basing on widely applicable methods and models of the quality assessment. A conceptual model of the automotive product quality system meeting customer requirements has been developed. Typical characteristics of modern industrial production are an increase in the production dynamism that determines the product properties; a continuous increase in the volume of information required for decision-making, an increased role of knowledge and high technologies implementing absolutely new scientific and technical ideas. To solve the problem of increasing the automotive product quality, a conceptual structural and hierarchical model is offered to ensure its quality as a closed system with feedback between the regulatory, manufacturing, and information modules, responsible for formation of the product quality at all stages of its life cycle. The three module model of the system of the industrial product quality assurance is considered to be universal and to give the opportunity to explore processes of any complexity while solving theoretical and practical problems of the quality assessment and prediction for products for various purposes, including automotive

    Development of Variant of Software Architecture Implementation for Low-power General Purpose Microcontrollers by Finite State Machines

    Get PDF
    As a result of the research, two directions for development of software architecture for low-power general purpose microcontrollers (LPGPM) are identified. The first, classical approach is the development using standard State patterns. The second is the development of programs, algorithms and structures based on mathematical analysis.The first direction is chosen in the work. The variant of the implementation of a typical pattern for development of software architecture (SA) in the form of a finite state machine (FSM) is proposed to discussion. This pattern allows to divide the development of the architectural part of the program for LPGPM and programming the LPGPM hardware. This approach makes it possible to divide the work of the software architect and the work of LPGPM hardware specialists. Advantage of the solution in comparison with the real time operating system (RTOS) is the saving of LPGPM hardware resources. In addition, it improves the readability of code and good testing prospects. The resulting architecture makes it possible to easily accompany the software and switch to other types of microcontroller. The disadvantage is an increase in the required amount of RAM with an increase in the number of states. It is this disadvantage that requires the application not only of experimental and engineering-intuitive methods, but also to continue research in the second direction

    Future skills issues affecting industry sectors in Wales: electronics sector

    Get PDF
    • …
    corecore