3,247 research outputs found

    When Things Matter: A Data-Centric View of the Internet of Things

    Full text link
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. While IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy, and continuous. This article surveys the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Cloud-assisted body area networks: state-of-the-art and future challenges

    Get PDF
    Body area networks (BANs) are emerging as enabling technology for many human-centered application domains such as health-care, sport, fitness, wellness, ergonomics, emergency, safety, security, and sociality. A BAN, which basically consists of wireless wearable sensor nodes usually coordinated by a static or mobile device, is mainly exploited to monitor single assisted livings. Data generated by a BAN can be processed in real-time by the BAN coordinator and/or transmitted to a server-side for online/offline processing and long-term storing. A network of BANs worn by a community of people produces large amount of contextual data that require a scalable and efficient approach for elaboration and storage. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of body sensor data streams. In this paper, we motivate the introduction of Cloud-assisted BANs along with the main challenges that need to be addressed for their development and management. The current state-of-the-art is overviewed and framed according to the main requirements for effective Cloud-assisted BAN architectures. Finally, relevant open research issues in terms of efficiency, scalability, security, interoperability, prototyping, dynamic deployment and management, are discussed

    When things matter: A survey on data-centric Internet of Things

    Get PDF
    With the recent advances in radio-frequency identification (RFID), low-cost wireless sensor devices, and Web technologies, the Internet of Things (IoT) approach has gained momentum in connecting everyday objects to the Internet and facilitating machine-to-human and machine-to-machine communication with the physical world. IoT offers the capability to connect and integrate both digital and physical entities, enabling a whole new class of applications and services, but several significant challenges need to be addressed before these applications and services can be fully realized. A fundamental challenge centers around managing IoT data, typically produced in dynamic and volatile environments, which is not only extremely large in scale and volume, but also noisy and continuous. This paper reviews the main techniques and state-of-the-art research efforts in IoT from data-centric perspectives, including data stream processing, data storage models, complex event processing, and searching in IoT. Open research issues for IoT data management are also discussed

    Situation fencing: making geo-fencing personal and dynamic

    Get PDF
    Geo-fencing has recently been applied to multiple applications including media recommendation, advertisements, wildlife monitoring, and recreational activities. However current geo-fencing systems work with static geographical boundaries. Situation Fencing allows for these boundaries to vary automatically based on situations derived by a combination of global and personal data streams. We present a generic approach for situation fencing, and demonstrate how it can be operationalized in practice. The results obtained in a personalized allergy alert application are encouraging and open door for building thousands of similar applications using the same framework in near future

    BodyCloud: a SaaS approach for community body sensor networks

    Get PDF
    Body Sensor Networks (BSNs) have been recently introduced for the remote monitoring of human activities in a broad range of application domains, such as health care, emergency management, fitness and behaviour surveillance. BSNs can be deployed in a community of people and can generate large amounts of contextual data that require a scalable approach for storage, processing and analysis. Cloud computing can provide a flexible storage and processing infrastructure to perform both online and offline analysis of data streams generated in BSNs. This paper proposes BodyCloud, a SaaS approach for community BSNs that supports the development and deployment of Cloud-assisted BSN applications. BodyCloud is a multi-tier application-level architecture that integrates a Cloud computing platform and BSN data streams middleware. BodyCloud provides programming abstractions that allow the rapid development of community BSN applications. This work describes the general architecture of the proposed approach and presents a case study for the real-time monitoring and analysis of cardiac data streams of many individuals

    Using big data for customer centric marketing

    Get PDF
    This chapter deliberates on “big data” and provides a short overview of business intelligence and emerging analytics. It underlines the importance of data for customer-centricity in marketing. This contribution contends that businesses ought to engage in marketing automation tools and apply them to create relevant, targeted customer experiences. Today’s business increasingly rely on digital media and mobile technologies as on-demand, real-time marketing has become more personalised than ever. Therefore, companies and brands are striving to nurture fruitful and long lasting relationships with customers. In a nutshell, this chapter explains why companies should recognise the value of data analysis and mobile applications as tools that drive consumer insights and engagement. It suggests that a strategic approach to big data could drive consumer preferences and may also help to improve the organisational performance.peer-reviewe

    Design and Implementation of a Scalable Crowdsensing Platform for Geospatial Data

    Get PDF
    In the recent years smart devices and small low-powered sensors are becoming ubiquitous and nowadays everything is connected altogether, which is a promising foundation for crowdsensing of data related to various environmental and societal phenomena. Very often, such data is especially meaningful when related to time and location, which is possible by already equipped GPS capabilities of modern smart devices. However, in order to gain knowledge from high-volume crowd-sensed data, it has to be collected and stored in a central platform, where it can be processed and transformed for various use cases. Conventional approaches built around classical relational databases and monolithic backends, that load and process the geospatial data on a per-request basis are not suitable for supporting the data requests of a large crowd willing to visualize phenomena. The possibly millions of data points introduce challenges for calculation, data-transfer and visualization on smartphones with limited graphics performance. We have created an architectural design, which combines a cloud-native approach with Big Data concepts used in the Internet of Things. The architectural design can be used as a generic foundation to implement a scalable backend for a platform, that covers aspects important for crowdsensing, such as social- and incentive features, as well as a sophisticated stream processing concept to calculate incoming measurement data and store pre-aggregated results. The calculation is based on a global grid system to index geospatial data for efficient aggregation and building a hierarchical geospatial relationship of averaged values, that can be directly used to rapidly and efficiently provide data on requests for visualization. We introduce the Noisemap project as an exemplary use case of such a platform and elaborate on certain requirements and challenges also related to frontend implementations. The goal of the project is to collect crowd-sensed noise measurements via smartphones and provide users information and a visualization of noise levels in their environment, which requires storing and processing in a central platform. A prototypic implementation for the measurement context of the Noisemap project is showing that the architectural design is indeed feasible to realize

    Generic processing of real-time physiological data in the cloud

    Get PDF
    There is an emerging market in the collection of physiological data for analysis and presentation to end-users via web technologies for applications including health and fitness, telemedicine and self-tracking. As technology has improved, real-time streaming of physiological data, providing end-to-end user feedback has become feasible, allowing for innovative applications to be developed. Currently, there is no standardised method of collecting physiological data over the web for analysis and feedback to an end-user in real-time; existing platforms only support specific devices and application domains. This paper proposes a generic methodology and architecture for the collection, analysis and presentation of physiological data. It defines a standard method of encapsulating data from heterogeneous sensors, performing transformations on it and analysing it. The approach is evaluated through an implementation of the architecture using cloud computing technologies and an appropriate case study
    corecore