1,974 research outputs found

    Prosodic-Enhanced Siamese Convolutional Neural Networks for Cross-Device Text-Independent Speaker Verification

    Full text link
    In this paper a novel cross-device text-independent speaker verification architecture is proposed. Majority of the state-of-the-art deep architectures that are used for speaker verification tasks consider Mel-frequency cepstral coefficients. In contrast, our proposed Siamese convolutional neural network architecture uses Mel-frequency spectrogram coefficients to benefit from the dependency of the adjacent spectro-temporal features. Moreover, although spectro-temporal features have proved to be highly reliable in speaker verification models, they only represent some aspects of short-term acoustic level traits of the speaker's voice. However, the human voice consists of several linguistic levels such as acoustic, lexicon, prosody, and phonetics, that can be utilized in speaker verification models. To compensate for these inherited shortcomings in spectro-temporal features, we propose to enhance the proposed Siamese convolutional neural network architecture by deploying a multilayer perceptron network to incorporate the prosodic, jitter, and shimmer features. The proposed end-to-end verification architecture performs feature extraction and verification simultaneously. This proposed architecture displays significant improvement over classical signal processing approaches and deep algorithms for forensic cross-device speaker verification.Comment: Accepted in 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018

    From Monologue to Dialogue: Natural Language Generation in OVIS

    Get PDF
    This paper describes how a language generation system that was originally designed for monologue generation, has been adapted for use in the OVIS spoken dialogue system. To meet the requirement that in a dialogue, the system's utterances should make up a single, coherent dialogue turn, several modifications had to be made to the system. The paper also discusses the influence of dialogue context on information status, and its consequences for the generation of referring expressions and accentuation

    Collapsed speech segment detection and suppression for WaveNet vocoder

    Full text link
    In this paper, we propose a technique to alleviate the quality degradation caused by collapsed speech segments sometimes generated by the WaveNet vocoder. The effectiveness of the WaveNet vocoder for generating natural speech from acoustic features has been proved in recent works. However, it sometimes generates very noisy speech with collapsed speech segments when only a limited amount of training data is available or significant acoustic mismatches exist between the training and testing data. Such a limitation on the corpus and limited ability of the model can easily occur in some speech generation applications, such as voice conversion and speech enhancement. To address this problem, we propose a technique to automatically detect collapsed speech segments. Moreover, to refine the detected segments, we also propose a waveform generation technique for WaveNet using a linear predictive coding constraint. Verification and subjective tests are conducted to investigate the effectiveness of the proposed techniques. The verification results indicate that the detection technique can detect most collapsed segments. The subjective evaluations of voice conversion demonstrate that the generation technique significantly improves the speech quality while maintaining the same speaker similarity.Comment: 5 pages, 6 figures. Proc. Interspeech, 201

    Acoustic Approaches to Gender and Accent Identification

    Get PDF
    There has been considerable research on the problems of speaker and language recognition from samples of speech. A less researched problem is that of accent recognition. Although this is a similar problem to language identification, di�erent accents of a language exhibit more fine-grained di�erences between classes than languages. This presents a tougher problem for traditional classification techniques. In this thesis, we propose and evaluate a number of techniques for gender and accent classification. These techniques are novel modifications and extensions to state of the art algorithms, and they result in enhanced performance on gender and accent recognition. The first part of the thesis focuses on the problem of gender identification, and presents a technique that gives improved performance in situations where training and test conditions are mismatched. The bulk of this thesis is concerned with the application of the i-Vector technique to accent identification, which is the most successful approach to acoustic classification to have emerged in recent years. We show that it is possible to achieve high accuracy accent identification without reliance on transcriptions and without utilising phoneme recognition algorithms. The thesis describes various stages in the development of i-Vector based accent classification that improve the standard approaches usually applied for speaker or language identification, which are insu�cient. We demonstrate that very good accent identification performance is possible with acoustic methods by considering di�erent i-Vector projections, frontend parameters, i-Vector configuration parameters, and an optimised fusion of the resulting i-Vector classifiers we can obtain from the same data. We claim to have achieved the best accent identification performance on the test corpus for acoustic methods, with up to 90% identification rate. This performance is even better than previously reported acoustic-phonotactic based systems on the same corpus, and is very close to performance obtained via transcription based accent identification. Finally, we demonstrate that the utilization of our techniques for speech recognition purposes leads to considerably lower word error rates. Keywords: Accent Identification, Gender Identification, Speaker Identification, Gaussian Mixture Model, Support Vector Machine, i-Vector, Factor Analysis, Feature Extraction, British English, Prosody, Speech Recognition

    Audio Deepfake Detection: A Survey

    Full text link
    Audio deepfake detection is an emerging active topic. A growing number of literatures have aimed to study deepfake detection algorithms and achieved effective performance, the problem of which is far from being solved. Although there are some review literatures, there has been no comprehensive survey that provides researchers with a systematic overview of these developments with a unified evaluation. Accordingly, in this survey paper, we first highlight the key differences across various types of deepfake audio, then outline and analyse competitions, datasets, features, classifications, and evaluation of state-of-the-art approaches. For each aspect, the basic techniques, advanced developments and major challenges are discussed. In addition, we perform a unified comparison of representative features and classifiers on ASVspoof 2021, ADD 2023 and In-the-Wild datasets for audio deepfake detection, respectively. The survey shows that future research should address the lack of large scale datasets in the wild, poor generalization of existing detection methods to unknown fake attacks, as well as interpretability of detection results

    SYNTHESIZING DYSARTHRIC SPEECH USING MULTI-SPEAKER TTS FOR DSYARTHRIC SPEECH RECOGNITION

    Get PDF
    Dysarthria is a motor speech disorder often characterized by reduced speech intelligibility through slow, uncoordinated control of speech production muscles. Automatic Speech recognition (ASR) systems may help dysarthric talkers communicate more effectively. However, robust dysarthria-specific ASR requires a significant amount of training speech is required, which is not readily available for dysarthric talkers. In this dissertation, we investigate dysarthric speech augmentation and synthesis methods. To better understand differences in prosodic and acoustic characteristics of dysarthric spontaneous speech at varying severity levels, a comparative study between typical and dysarthric speech was conducted. These characteristics are important components for dysarthric speech modeling, synthesis, and augmentation. For augmentation, prosodic transformation and time-feature masking have been proposed. For dysarthric speech synthesis, this dissertation has introduced a modified neural multi-talker TTS by adding a dysarthria severity level coefficient and a pause insertion model to synthesize dysarthric speech for varying severity levels. In addition, we have extended this work by using a label propagation technique to create more meaningful control variables such as a continuous Respiration, Laryngeal and Tongue (RLT) parameter, even for datasets that only provide discrete dysarthria severity level information. This approach increases the controllability of the system, so we are able to generate more dysarthric speech with a broader range. To evaluate their effectiveness for synthesis of training data, dysarthria-specific speech recognition was used. Results show that a DNN-HMM model trained on additional synthetic dysarthric speech achieves WER improvement of 12.2% compared to the baseline, and that the addition of the severity level and pause insertion controls decrease WER by 6.5%, showing the effectiveness of adding these parameters. Overall results on the TORGO database demonstrate that using dysarthric synthetic speech to increase the amount of dysarthric-patterned speech for training has a significant impact on the dysarthric ASR systems

    Disentangling Prosody Representations with Unsupervised Speech Reconstruction

    Full text link
    Human speech can be characterized by different components, including semantic content, speaker identity and prosodic information. Significant progress has been made in disentangling representations for semantic content and speaker identity in Automatic Speech Recognition (ASR) and speaker verification tasks respectively. However, it is still an open challenging research question to extract prosodic information because of the intrinsic association of different attributes, such as timbre and rhythm, and because of the need for supervised training schemes to achieve robust large-scale and speaker-independent ASR. The aim of this paper is to address the disentanglement of emotional prosody from speech based on unsupervised reconstruction. Specifically, we identify, design, implement and integrate three crucial components in our proposed speech reconstruction model Prosody2Vec: (1) a unit encoder that transforms speech signals into discrete units for semantic content, (2) a pretrained speaker verification model to generate speaker identity embeddings, and (3) a trainable prosody encoder to learn prosody representations. We first pretrain the Prosody2Vec representations on unlabelled emotional speech corpora, then fine-tune the model on specific datasets to perform Speech Emotion Recognition (SER) and Emotional Voice Conversion (EVC) tasks. Both objective (weighted and unweighted accuracies) and subjective (mean opinion score) evaluations on the EVC task suggest that Prosody2Vec effectively captures general prosodic features that can be smoothly transferred to other emotional speech. In addition, our SER experiments on the IEMOCAP dataset reveal that the prosody features learned by Prosody2Vec are complementary and beneficial for the performance of widely used speech pretraining models and surpass the state-of-the-art methods when combining Prosody2Vec with HuBERT representations.Comment: Accepted by IEEE/ACM Transactions on Audio, Speech, and Language Processin
    • …
    corecore