673 research outputs found

    Detection of Prosodic Boundaries in Speech Using Wav2Vec 2.0

    Full text link
    Prosodic boundaries in speech are of great relevance to both speech synthesis and audio annotation. In this paper, we apply the wav2vec 2.0 framework to the task of detecting these boundaries in speech signal, using only acoustic information. We test the approach on a set of recordings of Czech broadcast news, labeled by phonetic experts, and compare it to an existing text-based predictor, which uses the transcripts of the same data. Despite using a relatively small amount of labeled data, the wav2vec2 model achieves an accuracy of 94% and F1 measure of 83% on within-sentence prosodic boundaries (or 95% and 89% on all prosodic boundaries), outperforming the text-based approach. However, by combining the outputs of the two different models we can improve the results even further.Comment: This preprint is a pre-review version of the paper and does not contain any post-submission improvements or corrections. The Version of Record of this contribution is published in the proceedings of the International Conference on Text, Speech, and Dialogue (TSD 2022), LNAI volume 13502, and is available online at https://doi.org/10.1007/978-3-031-16270-1_3

    Meta Learning Approach to Phone Duration Modeling

    Get PDF
    One of the essential prerequisites for achieving the naturalness of synthesized speech is the possibility of the automatic prediction of phone duration, due to the high importance of segmental duration in speech perception. In this paper we present a new phone duration prediction model for the Serbian language using meta learning approach. Based on the data obtained from the analysis of a large speech database, we used a feature set of 21 parameters describing phones and their contexts. These include attributes related to the segmental identity, manner of articulation (for consonants), attributes related to phonological context, such as segment types and voicing values of neighboring phones, presence or absence of lexical stress, morphological attributes, such as part-of-speech, and prosodic attributes, such as phonological word length, the position of the segment in the syllable, the position of the syllable in a word, the position of a word in a phrase, phrase break level, etc. Phone duration model obtained using meta learning algorithm outperformed the best individual model by approximately 2,0% and 1,7% in terms of the relative reduction of the root-mean-squared error and the mean absolute error, respectively

    Dimensions of Segmental Variability: Interaction of Prosody and Surprisal in Six Languages

    Get PDF
    Contextual predictability variation affects phonological and phonetic structure. Reduction and expansion of acoustic-phonetic features is also characteristic of prosodic variability. In this study, we assess the impact of surprisal and prosodic structure on phonetic encoding, both independently of each other and in interaction. We model segmental duration, vowel space size and spectral characteristics of vowels and consonants as a function of surprisal as well as of syllable prominence, phrase boundary, and speech rate. Correlates of phonetic encoding density are extracted from a subset of the BonnTempo corpus for six languages: American English, Czech, Finnish, French, German, and Polish. Surprisal is estimated from segmental n-gram language models trained on large text corpora. Our findings are generally compatible with a weak version of Aylett and Turk's Smooth Signal Redundancy hypothesis, suggesting that prosodic structure mediates between the requirements of efficient communication and the speech signal. However, this mediation is not perfect, as we found evidence for additional, direct effects of changes in surprisal on the phonetic structure of utterances. These effects appear to be stable across different speech rates

    The invalidity of rhythm class hypothesis

    Get PDF
    Languages are said to be stress-timed, syllable-timed or mora-timed. In a stress-timed language, inter-stress intervals are or tend to be constant, hence, isochronous, while in a syllable-timed or mora-timed language, successive syllables or morae are or tent to be equal in duration. Empirical research has failed to find evidence of isochrony in any language, yet the hypothesis is now sustained by perception accounts or phonetic metrics that do not measure isochrony. We have re-examined the rhythm class hypothesis by looking for evidence of at least a tendency toward isochrony, through a comparison of English, an alleged stress-timed language, and Mandarin, an alleged syllable-timed language. The results show that in English, segments are not compressible to allow equal syllable duration, and syllables are incompressible to enable equal inter-stress interval duration and phrase duration. In contrast, Mandarin shows a small tendency toward both equal syllable duration and equal phrase duration. These findings are exactly the opposite of what would be predicted by the rhythm class hypothesis. We therefore argue that the hypothesis is not just flawed, but simply untenable, and the so-called rhythm classes should no longer be held as a basic fact of human language

    Analyzing Prosody with Legendre Polynomial Coefficients

    Full text link
    This investigation demonstrates the effectiveness of Legendre polynomial coefficients representing prosodic contours within the context of two different tasks: nativeness classification and sarcasm detection. By making use of accurate representations of prosodic contours to answer fundamental linguistic questions, we contribute significantly to the body of research focused on analyzing prosody in linguistics as well as modeling prosody for machine learning tasks. Using Legendre polynomial coefficient representations of prosodic contours, we answer prosodic questions about differences in prosody between native English speakers and non-native English speakers whose first language is Mandarin. We also learn more about prosodic qualities of sarcastic speech. We additionally perform machine learning classification for both tasks, (achieving an accuracy of 72.3% for nativeness classification, and achieving 81.57% for sarcasm detection). We recommend that linguists looking to analyze prosodic contours make use of Legendre polynomial coefficients modeling; the accuracy and quality of the resulting prosodic contour representations makes them highly interpretable for linguistic analysis

    The Distribution Of Disfluencies In Spontaneous Speech: Empirical Observations And Theoretical Implications

    Get PDF
    This dissertation provides an empirical description of the forms and their distribution of disfluencies in spontaneous speech. Although research in this area has received much attention in past four decades, large scale analyses of speech corpora from multiple communication settings, languages, and speaker\u27s cognitive states are still lacking. Understandings of regularities of different kinds of disfluencies based on large speech samples across multiple domains are essential for both theoretical and applied purposes. As an attempt to fill this gap, this dissertation takes the approach of quantitative analysis of large corpora of spontaneous speech. The selected corpora reflect a diverse range of tasks and languages. The dissertation re-examines speech disfluency phenomena, including silent pauses, filled pauses (``um and ``uh ) and repetitions, and provides the empirical basis for future work in both theoretical and applied settings. Results from the study of silent and filled pauses indicate that a potential sociolinguistic variation can in fact be explained from the perspective of the speech planning process. The descriptive analysis of repetitions has identified a new form of repetitive phenomenon: repetitive interpolation. Both the acoustic and textual properties of repetitive interpolation have been documented through rigorous quantitative analysis. The defining features of this phenomenon can be further used in designing speech based applications such as speaker state detection. Although the goal of this descriptive analysis is not to formulate and test specific hypothesis about speech production, potential directions for future research in speech production models are proposed and evaluated. The quantitative methods employed throughout this dissertation can also be further developed into interpretable features in machine learning systems that require automatic processing of spontaneous speech

    Corpora compilation for prosody-informed speech processing

    Get PDF
    Research on speech technologies necessitates spoken data, which is usually obtained through read recorded speech, and specifically adapted to the research needs. When the aim is to deal with the prosody involved in speech, the available data must reflect natural and conversational speech, which is usually costly and difficult to get. This paper presents a machine learning-oriented toolkit for collecting, handling, and visualization of speech data, using prosodic heuristic. We present two corpora resulting from these methodologies: PANTED corpus, containing 250 h of English speech from TED Talks, and Heroes corpus containing 8 h of parallel English and Spanish movie speech. We demonstrate their use in two deep learning-based applications: punctuation restoration and machine translation. The presented corpora are freely available to the research community

    The Distribution Of Disfluencies In Spontaneous Speech: Empirical Observations And Theoretical Implications

    Get PDF
    This dissertation provides an empirical description of the forms and their distribution of disfluencies in spontaneous speech. Although research in this area has received much attention in past four decades, large scale analyses of speech corpora from multiple communication settings, languages, and speaker\u27s cognitive states are still lacking. Understandings of regularities of different kinds of disfluencies based on large speech samples across multiple domains are essential for both theoretical and applied purposes. As an attempt to fill this gap, this dissertation takes the approach of quantitative analysis of large corpora of spontaneous speech. The selected corpora reflect a diverse range of tasks and languages. The dissertation re-examines speech disfluency phenomena, including silent pauses, filled pauses (``um and ``uh ) and repetitions, and provides the empirical basis for future work in both theoretical and applied settings. Results from the study of silent and filled pauses indicate that a potential sociolinguistic variation can in fact be explained from the perspective of the speech planning process. The descriptive analysis of repetitions has identified a new form of repetitive phenomenon: repetitive interpolation. Both the acoustic and textual properties of repetitive interpolation have been documented through rigorous quantitative analysis. The defining features of this phenomenon can be further used in designing speech based applications such as speaker state detection. Although the goal of this descriptive analysis is not to formulate and test specific hypothesis about speech production, potential directions for future research in speech production models are proposed and evaluated. The quantitative methods employed throughout this dissertation can also be further developed into interpretable features in machine learning systems that require automatic processing of spontaneous speech

    Prosodic description: An introduction for fieldworkers

    Get PDF
    This article provides an introductory tutorial on prosodic features such as tone and accent for researchers working on little-known languages. It specifically addresses the needs of non-specialists and thus does not presuppose knowledge of the phonetics and phonology of prosodic features. Instead, it intends to introduce the uninitiated reader to a field often shied away from because of its (in part real, but in part also just imagined) complexities. It consists of a concise overview of the basic phonetic phenomena (section 2) and the major categories and problems of their functional and phonological analysis (sections 3 and 4). Section 5 gives practical advice for documenting and analyzing prosodic features in the field.National Foreign Language Resource Cente

    The phonetics of speech breathing : pauses, physiology, acoustics, and perception

    Get PDF
    Speech is made up of a continuous stream of speech sounds that is interrupted by pauses and breathing. As phoneticians are primarily interested in describing the segments of the speech stream, pauses and breathing are often neglected in phonetic studies, even though they are vital for speech. The present work adds to a more detailed view of both pausing and speech breathing with a special focus on the latter and the resulting breath noises, investigating their acoustic, physiological, and perceptual aspects. We present an overview of how a selection of corpora annotate pauses and pause-internal particles, as well as a recording setup that can be used for further studies on speech breathing. For pauses, this work emphasized their optionality and variability under different tempos, as well as the temporal composition of silence and breath noise in breath pauses. For breath noises, we first focused on acoustic and physiological characteristics: We explored alignment between the onsets and offsets of audible breath noises with the start and end of expansion of both rib cage and abdomen. Further, we found similarities between speech breath noises and aspiration phases of /k/, as well as that breath noises may be produced with a more open and slightly more front place of articulation than realizations of schwa. We found positive correlations between acoustic and physiological parameters, suggesting that when speakers inhale faster, the resulting breath noises were more intense and produced more anterior in the mouth. Inspecting the entire spectrum of speech breath noises, we showed relatively flat spectra and several weak peaks. These peaks largely overlapped with resonances reported for inhalations produced with a central vocal tract configuration. We used 3D-printed vocal tract models representing four vowels and four fricatives to simulate in- and exhalations by reversing airflow direction. We found the direction to not have a general effect for all models, but only for those with high-tongue configurations, as opposed to those that were more open. Then, we compared inhalations produced with the schwa-model to human inhalations in an attempt to approach the vocal tract configuration in speech breathing. There were some similarities, however, several complexities of human speech breathing not captured in the models complicated comparisons. In two perception studies, we investigated how much information listeners could auditorily extract from breath noises. First, we tested categorizing different breath noises into six different types, based on airflow direction and airway usage, e.g. oral inhalation. Around two thirds of all answers were correct. Second, we investigated how well breath noises could be used to discriminate between speakers and to extract coarse information on speaker characteristics, such as age (old/young) and sex (female/male). We found that listeners were able to distinguish between two breath noises coming from the same or different speakers in around two thirds of all cases. Hearing one breath noise, classification of sex was successful in around 64%, while for age it was 50%, suggesting that sex was more perceivable than age in breath noises.Deutsche Forschungsgemeinschaft (DFG) – Projektnummer 418659027: "Pause-internal phonetic particles in speech communication
    corecore