32 research outputs found

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    Integrated Optoelectronic Devices and System Limitations for WDM Passive Optical Networks

    Get PDF
    This thesis puts focus on the technological challenges for Wavelength Division Multiplexed Passive Optical Network (WDM-PON) implementation, and presents novel semiconductor optical devices for deployment at the optical network unit (ONU). The first-ever reported L-band Reflective semiconductor optical amplifier (RSOA) is presented based on InP-base material. A theoretical model is developed to estimate the optical gain and the saturation power of this device compared to a conventional SOA. Experiments on this device design show long-range telecom wavelength operation, with polarization-independent gain of greater than 20 dB, and low saturation output power of 0 dBm suitable for PON applications. Next, the effect of the amplified spontaneous emission noise of RSOA devices on WDM-PON system is investigated. It is shown through theoretical modeling and simulations that the RSOA noise combined with receiver noise statistics increase probability of error, and induce considerable power penalties to the WDM-PON system. By improving the coupling efficiencies, and by distributing more current flow to the input of these devices, steps can be taken to improve device noise characteristics. Further, in spectrally-spliced WDM-PONs deploying RSOAs, the effect of AWG filter shape on system performance is investigated. Simulation modeling and experiments show that deployment of Flat-band AWGs is critical for reducing the probability of error caused by AWG spectral shape filtering. Flat-band athermal AWGs in comparison to Gaussin-shape counterparts satisfy the maximum acceptable error probability requirements, and reduce the power penalty associated with filtering effect. In addition, detuning between two AWG center wavelengths impose further power penalties to the WDM-PON system. In the last section of this thesis, motivated by RSOA device system limitations, a novel injection-locked Fabry-Perot (IL-FP) device is presented which consists of a gain section monolithically integrated with a phase section. The gain section provides locking of one FP mode to a seed source wavelength, while the phase modulator allows for adjusting the wavelength of the internal modes by tuning bias current to maintain mode-locking. This device counters any mode drifts caused by temperature variations, and allows for cooler-less operation over a wide range of currents. The devices and the performance metrics subsequently allow for a hybrid integration platform on a silicon substrate and integrate many functionalities like reflective modulator with thin film dielectric filter and receiver on a single chip for deployment at the user-end of future-proof low cost WDM-PONs

    Energy-Efficiency in Optical Networks

    Get PDF

    Análise tecno-económica em redes de acesso óptico

    Get PDF
    Mestrado em Engenharia de Computadores e TelemáticaEsta dissertação tem como objectivo analisar os principais problemas que os fornecedores de serviços têm que considerar ao implementar e ao migrar as redes de acesso ópticas existentes e futuras. Iremos considerar a migração da rede GPON, como rede de acesso actual, para as Redes Óticas de Acesso de Próxima Geração (NG-OANs), como a WDM-PON e a OFDM-PON. O trabalho foca-se nos Custos de Capital (CapEx) por utilizador, e em três factores que condicionam este custo: densidade populacional, topologia da rede e custo dos componentes. Uma visão geral e avaliação das redes óticas passivas existentes e futuras é apresentada. Um modelo tecno-económico para o cálculo do custo das redes de acesso é proposto, tendo em conta o efeito da taxa de subscrição. O custo total de cada tecnologia de rede é calculado. O CapEx por utilizador para esquemas divisores simples e em cascata é também calculado, para diferentes taxas de subscrição. O custo dos componentes é considerado quando o preço é extrapolado em função do tempo e do volume.This dissertation aims to analyse the main issues to be faced by the service providers in implementation and migration of existing and future optical access networks. We are going to consider the migration of the networks from GPON, as the current access network technology, to Next Generation Optical Access Networks (NG-OANs), such as WDM-PON and OFDM-PON. The work focuses on the Capital Expenditures (CapEx) per user and three factors that drive this cost: population density, network topology and components cost. An overview and assessment of existing and future passive optical networks is provided. A techno-economic model for calculating of deployment cost of access networks is presented, accounting for the effect of take rate. The total cost of each network technology is calculated. The CapEx per user for both single and cascaded splitter schemes for different take rates is also calculated. Furthermore the components cost is considered, when the price is extrapolated considering time and volume

    Design of communication systems based on broadband sources for fiber and free space optical links

    Full text link
    [ES] Las comunicaciones ópticas inalámbricas (OWC) constituyen una tecnología muy prometedora para el desarrollo de futuras comunicaciones inalámbricas. De hecho, ha despertado un interés creciente entre los investigadores y varias empresas de todo el mundo trabajan actualmente en el desarrollo de redes inalámbricas de muy alta velocidad. Las comunidades científica e industrial consideran la OWC como una tecnología complementaria en sus diversas formas: comunicaciones ópticas en el espacio libre (FSO), comunicaciones de luz visible (VLC) o fidelidad de la luz (Li-Fi). El espectro óptico ha sido considerado durante muchos años como una gran oportunidad para las comunicaciones inalámbricas, especialmente debido a la saturación del espectro de radiofrecuencia (RF). Esta disertación trata del uso de fuentes de banda ancha en sistemas de transmisión de luz visible (VLC), así como en sistemas de transmisión en el espectro infrarrojo por fibra óptica. En el trabajo de investigación realizado se pueden distinguir tres partes: En la primera parte, se considera el estudio y la simulación de componentes de Diodos Emisores de Luz (LED) con el software WIEN2k centrándose en las propiedades ópticas y eléctricas de los elementos II-VI. La segunda parte trata del diseño, la implementación y las pruebas de diferentes prototipos de comunicación VLC para la transmisión analógica y digital en modo simplex y semidúplex. Hemos demostrado un sistema OWC empleando una fuente de banda ancha (LED) para la transmisión no sólo de datos, sino también para la transmisión inalámbrica de energía. Además, se aborda el problema de la sincronización y la detección del nivel "1" o "0" de un bit en los sistemas de comunicación inalámbrica óptica implementados que surge como consecuencia de la atenuación de la luz a lo largo de la distancia y al problema de la pérdida de línea de visión (NLOS) entre el emisor y el receptor. Para hacer frente a este problema, se ha proporcionado un protocolo de comunicación que garantiza la transmisión fiable de datos digitales con un algoritmo de detección de nivel de bits adaptativo y se ha demostrado su eficacia mediante la transmisión de textos e imágenes. Además, esta tesis aporta una solución para la implementación de transmisores multiplexados en redes con división de longitud de onda (WDM) para formatos de modulación con multiplexación por división de frecuencia ortogonal (OFDM) basados en el uso de fuentes de banda ancha en el espectro infrarrojo para redes de fibra bidireccionales centralizadas. A pesar de las limitaciones impuestas por la dispersión cromática en el uso de este tipo de fuentes ópticas, la inclusión de ciertas estructuras antes de la detección permite la transmisión de señales OFDM en enlaces ópticos. En este trabajo se ha demostrado experimentalmente la reutilización de portadoras, la asignación dinámica de ancho de banda y la transmisión de señales OFDM multibanda mediante el uso de fuentes ópticas de banda ancha en redes WDM. Los principales resultados obtenidos en cada parte de esta tesis doctoral muestran los procedimientos de estudio, la eficacia de las soluciones propuestas y las limitaciones encontradas.[CA] Les comunicacions òptiques sense fils (OWC) constitueixen una tecnologia molt prometedora per al desenvolupament de futures comunicacions sense fils. De fet, ha despertat un interés creixent entre els investigadors i diverses empreses de tot el món treballen actualment en el desenvolupament de xarxes sense fils de molt alta velocitat. Les comunitats científica i industrial consideren la OWC com una tecnologia complementària en les seues diverses formes: comunicacions òptiques en l'espai lliure (FSO), comunicacions de llum visible (VLC) o fidelitat de la llum (Li-Fi). L'espectre òptic ha sigut considerat durant molts anys com una gran oportunitat per a les comunicacions sense fils, especialment a causa de la saturació de l'espectre de radiofreqüència (RF). Aquesta dissertació tracta de l'ús de fonts de banda ampla en sistemes de transmissió de llum visible (VLC), així com en sistemes de transmissió en l'espectre infraroig per fibra òptica. En el treball de recerca realitzat es poden distingir tres parts: ¿ En la primera part, es considera l'estudi i la simulació de components de Díodes Emissors de Llum (LED) amb el software WIEN2k centrant-se en les propietats òptiques i elèctriques dels elements II-VI. ¿ La segona part tracta del disseny, la implementació i les proves de diferents prototips de comunicació VLC per a la transmissió analògica i digital de manera simplex i semidúplex. Hem demostrat un sistema OWC emprant una font de banda ampla (LED) per a la transmissió no sols de dades, sinó també per a la transmissió sense fil d'energia. A més, s'aborda el problema de la sincronització i la detecció del nivell "1" o "0" d'un bit en els sistemes de comunicació sense fil òptica implementats, que sorgeix a conseqüència de l'atenuació de la llum al llarg de la distància i al problema de la pèrdua de línia de visió (NLOS) entre l'emissor i el receptor. Per a fer front a aquest problema, s'ha proporcionat un protocol de comunicació que garanteix la transmissió fiable de dades digitals amb un algorisme de detecció de nivell de bits adaptatiu i s'ha demostrat la seua eficàcia mitjançant la transmissió de textos i imatges. ¿ A més, aquesta tesi aporta una solució per a la implementació de transmissors multiplexats en xarxes amb divisió de longitud d'ona (WDM) per a formats de modulació amb multiplexació per divisió de freqüència ortogonal (OFDM) basats en l'ús de fonts de banda ampla en l'espectre infraroig per a xarxes de fibra bidireccionals centralitzades. Malgrat les limitacions imposades per la dispersió cromàtica en l'ús d'aquest tipus de fonts òptiques, la inclusió d'unes certes estructures abans de la detecció permet la transmissió de senyals OFDM en enllaços òptics. En aquest treball s'ha demostrat experimentalment la reutilització de portadores, l'assignació dinàmica d'amplada de banda i la transmissió de senyals OFDM multibanda mitjançant l'ús de fonts òptiques de banda ampla en xarxes WDM. Els principals resultats obtinguts en cada part d'aquesta tesi doctoral mostren els procediments d'estudi, l'eficàcia de les solucions proposades i les limitacions trobades.[EN] Optical wireless communication (OWC) is a very promising technology for future wireless communications developments. It has attracted increasing interest from researchers and several companies around the world are currently working on the development of very high-speed wireless networks. The scientific and industrial communities believe that OWC will be a complementary technology in its various forms: Free Space Optical communications (FSO), Visible Light Communications (VLC), Light Fidelity (Li-Fi). In fact, the optical spectrum has been considered for many years as a great opportunity for wireless communications especially due to the saturation of the radio frequency (RF) spectrum. This dissertation deals with the use of broadband sources in visible light transmission systems (VLC) as well as fiber optic systems. To carry out the research, three parts can be distinguished: In the first part, we consider the study and simulation of Light Emitting Diode (LED) components with the WIEN2k software by focusing on the optical and electrical properties of elements II-VI. The second part deals with the design, implementation and testing of different VLC communication prototypes for analog and digital transmission in simplex and half-duplex mode. We have demonstrated that an OWC system using a broadband source (i.e. an LED) can be used not only for data transmission, but also for wireless power transmission. Moreover, the synchronization problem and the detection of level "1" or "0" of a bit often arise in the optical wireless communication systems. This is a result of the attenuation nature of the light over the distance and the problem of Non Line-Of-Sight (NLOS) between the emitter and the receiver. To deal with this problem, a communication protocol ensuring reliable digital data transmission with an adaptive bit level detection algorithm has been provided and its effectiveness has been demonstrated by the transmission of texts and images. In addition, this thesis provides a solution for the implementation of wavelength division multiplexed - orthogonal frequency division multiplexed (WDM-OFDM) transmitters based on the use of broadband sources in the infrared spectrum for centralized bidirectional fiber networks. Despite the chromatic dispersion that avoids the use of this type of optical sources, the inclusion of certain structures before detection allows the transmission of OFDM signals in optical links. Carrier reuse, dynamic bandwidth allocation and multiband OFDM signals transmission will be experimentally demonstrated by using optical broadband sources in WDM networks. The main results obtained during this thesis work demonstrate the study procedures, for each part, the effectiveness of the proposed solutions as well as the constraints encountered.Sekkiou, I. (2021). Design of communication systems based on broadband sources for fiber and free space optical links [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/172542TESI

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency

    Data transport over optical fibre for ska using advanced modulation flexible spectrum technology

    Get PDF
    Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA.We optimise the flexible spectrum for real-time dynamic channel wavelength assignment, to ensure optimum network performance. We needed to identify and develop novel hardware and dynamic algorithms for these networks to function optimally to perform critical tasks. Such tasks include wavelength assignment, signal routing, network restoration and network protection. The antennas of the Square Kilometre Array (SKA) network connect to the correlator and data processor in a simple point-to-point fixed configuration. The connection of the astronomer users to the data processor, however, requires a more complex network architecture. This is because the network has users scattered around South Africa, Africa and the whole world. This calls for upgrade of the classical fixed wavelength spectrum grids, to flexible spectrum grid that has improved capacity, reliable, simple and cost-effectiveness through sharing of network infrastructure. The exponential growth of data traffic in current optical communication networks requires higher capacity for the bandwidth demands at a reduced cost per bit. All-optical signal processing is a promising technique to improve network resource utilisation and resolve wavelength contention associated with the flexible spectrum. Flexible Spectrum Dense Wavelength Division Multiplexed (DWDM) optical fibre networks are next-generation technology for handling extremely high data rates of the kind produced by MeerKAT and SKA. Each DWDM channel is capable of 10 Gbps transmission rate, which is sliceable into finer flexible grid 12.5 GHz granularity to offer the network elastic spectrum and channel spacing capable of signal routing and wavelength switching for the scalability of aggregate bandwidth. The variable-sized portions of the flexible spectrum assignment to end users at different speeds depend on bandwidth demand, allowing efficient utilisation of the spectrum resources. The entire bandwidth of dynamic optical connections must be contiguously allocated. However, there is an introduction of spectrum fragmentation due to spectrum contiguity related to the optical channels having different width. Thus large traffic demands are likely to experience blocking regardless of available bandwidth. To minimise the congestion and cost-effectively obtain high performance, the optical network must be reconfigurable, achievable by adding wavelength as an extra degree of freedom for effectiveness. This can introduce colourless, directionless and contentionless reconfigurability to route individual wavelengths from fibre to fibre across multiple nodes to avoid wavelength blocking/collisions, increasing the flexibility and capacity of a network. For these networks to function optimally, novel hardware and dynamic algorithms identification and development is a critical task. Such tasks include wavelength assignment, signal routing, network restoration and network protection. In this work, we for the first time to our knowledge proposed a spectrum defragmentation technique through reallocation of the central frequency of the optical transmitter, to increase the probability of finding a sufficient continuous spectrum. This is to improve network resource utilisation, capacity and resolve wavelength contention associated with a flexible spectrum in optical communication networks. The following chapter provides details on a flexible spectrum in optical fibre networks utilising DWDM, optimising transmitter-receivers, advanced modulation formats, coherent detection, reconfigurable optical add and drop multiplexer (ROADM) technology to implement hardware and middleware platforms which address growing bandwidth demands for scalability, flexibility and cost-efficiency. A major attribute is tunable lasers, an essential component for future flexible spectrum with application to wavelength switching, routing, wavelength conversion and ROADM for the multi-node optical network through spectrum flexibility and cost-effective sharing of fibre links, transmitters and receivers. Spectrum slicing into fine granular sub-carriers and assigning several frequency slots to accommodate diverse traffic demands is a viable approach. This work experimentally presents a spectral efficient technique for bandwidth variability, wavelength allocation, routing, defragmentation and wavelength selective switches in the nodes of a network, capable of removing the fixed grid spacing using low cost, high bandwidth, power-efficient and wavelength-tunable vertical-cavity surface-emitting laser (VCSEL) transmitter directly modulated with 10 Gbps data. This to ensure that majority of the spectrum utilisation at finer channel spacing, wastage of the spectrum resource as caused by the wavelength continuity constraint reduction and it improves bandwidth utilisation. The technique is flexible in terms of modulation formats and accommodates various formats with spectrally continuous channels, fulfilling the future bandwidth demands with transmissions beyond 100 Gbps per channel while maintaining spectral efficiency

    Optical flow switched networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Includes bibliographical references (p. 253-279).In the four decades since optical fiber was introduced as a communications medium, optical networking has revolutionized the telecommunications landscape. It has enabled the Internet as we know it today, and is central to the realization of Network-Centric Warfare in the defense world. Sustained exponential growth in communications bandwidth demand, however, is requiring that the nexus of innovation in optical networking continue, in order to ensure cost-effective communications in the future. In this thesis, we present Optical Flow Switching (OFS) as a key enabler of scalable future optical networks. The general idea behind OFS-agile, end-to-end, all-optical connections-is decades old, if not as old as the field of optical networking itself. However, owing to the absence of an application for it, OFS remained an underdeveloped idea-bereft of how it could be implemented, how well it would perform, and how much it would cost relative to other architectures. The contributions of this thesis are in providing partial answers to these three broad questions. With respect to implementation, we address the physical layer design of OFS in the metro-area and access, and develop sensible scheduling algorithms for OFS communication. Our performance study comprises a comparative capacity analysis for the wide-area, as well as an analytical approximation of the throughput-delay tradeoff offered by OFS for inter-MAN communication. Lastly, with regard to the economics of OFS, we employ an approximate capital expenditure model, which enables a throughput-cost comparison of OFS with other prominent candidate architectures. Our conclusions point to the fact that OFS offers significant advantage over other architectures in economic scalability.(cont.) In particular, for sufficiently heavy traffic, OFS handles large transactions at far lower cost than other optical network architectures. In light of the increasing importance of large transactions in both commercial and defense networks, we conclude that OFS may be crucial to the future viability of optical networking.by Guy E. Weichenberg.Ph.D

    Analog radio over fiber solutions for multi-band 5g systems

    Get PDF
    This study presents radio over fiber (RoF) solutions for the fifth-generation (5G) of wireless networks. After the state of the art and a technical background review, four main contributions are reported. The first one is proposing and investigating a RoF technique based on a dual-drive Mach-Zehnder modulator (DD-MZM) for multi-band mobile fronthauls, in which two radiofrequency (RF) signals in the predicted 5G bands individually feed an arm of the optical modulator. Experimental results demonstrate the approach enhances the RF interference mitigation and can prevail over traditional methods. The second contribution comprises the integration of a 5G transceiver, previously developed by our group, in a passive optical network (PON) using RoF technology and wavelength division multiplexing (WDM) overlay. The proposed architecture innovates by employing DD-MZM and enables to simultaneously transport baseband and 5G candidate RF signals in the same PON infrastructure. The proof-of-concept includes the transmission of a generalized frequency division multiplexing (GFDM) signal generated by the 5G transceiver in the 700 MHz band, a 26 GHz digitally modulated signal as a millimeter-waves 5G band, and a baseband signal from an gigabit PON (GPON). Experimental results demonstrate the 5G transceiver digital performance when using RoF technology for distributing the GFDM signal, as well as Gbit/s throughput at 26 GHz. The third contribution is the implementation of a flexible-waveform and multi-application fiber-wireless (FiWi) system toward 5G. Such system includes the FiWi transmission of the GFDM and filtered orthogonal frequency division multiplexing (F-OFDM) signals at 788 MHz, toward long-range cells for remote or rural mobile access, as well as the recently launched 5G NR standard in microwave and mm-waves, aiming enhanced mobile broadband indoor and outdoor applications. Digital signal processing (DSP) is used for selecting the waveform and linearizing the RoF link. Experimental results demonstrate the suitability of the proposed solution to address 5G scenarios and requirements, besides the applicability of using existent fiber-to-the-home (FTTH) networks from Internet service providers for implementing 5G systems. Finally, the fourth contribution is the implementation of a multi-band 5G NR system with photonic-assisted RF amplification (PAA). The approach takes advantage of a novel PAA technique, based on RoF technology and four-wave mixing effect, that allows straightforward integration to the transport networks. Experimental results demonstrate iv uniform and stable 15 dB wideband gain for Long Term Evolution (LTE) and three 5G signals, distributed in the frequency range from 780 MHz to 26 GHz and coexisting in the mobile fronthaul. The obtained digital performance has efficiently met the Third-Generation Partnership Project (3GPP) requirements, demonstrating the applicability of the proposed approach for using fiber-optic links to distribute and jointly amplify LTE and 5G signals in the optical domain.Agência 1Este trabalho apresenta soluções de rádio sobre fibra (RoF) para aplicações em redes sem fio de quinta geração (5G), e inclui quatro contribuições principais. A primeira delas refere-se à proposta e investigação de uma técnica de RoF baseada no modulador eletroóptico de braço duplo, dual-drive Mach-Zehnder (DD-MZM), para a transmissão simultânea de sinais de radiofrequência (RF) em bandas previstas para redes 5G. Resultados experimentais demonstram que o uso do DD-MZM favorece a ausência de interferência entre os sinais de RF transmitidos. A segunda contribuição trata da integração de um transceptor de RF, desenvolvido para aplicações 5G e apto a prover a forma de onda conhecida como generalized frequency division multiplexing (GFDM), em uma rede óptica passiva (PON) ao utilizar RoF e multiplexação por divisão de comprimento de onda (WDM). A arquitetura proposta permite transportar, na mesma infraestrutura de rede, sinais em banda base e de radiofrequência nas faixas do espectro candidatas para 5G. A prova de conceito inclui a distribuição conjunta de três tipos de sinais: um sinal GFDM na banda de 700 MHz, proveniente do transceptor desenvolvido; um sinal digital na frequência de 26 GHz, assumindo a faixa de ondas milimétricas; sinais em banda base provenientes de uma PON dedicada ao serviço de Internet. Resultados experimentais demonstram o desempenho do transceptor de RF ao utilizar a referida arquitetura para distribuir sinais GFDM, além de taxas de transmissão de dados da ordem de Gbit/s na faixa de 26 GHz. A terceira contribuição corresponde à implementação de um sistema fibra/rádio potencial para redes 5G, operando inclusive com o padrão ―5G New Radio (5G NR)‖ nas faixas de micro-ondas e ondas milimétricas. Tal sistema é capaz de prover macro células na banda de 700 MHz para aplicações de longo alcance e/ou rurais, utilizando sinais GFDM ou filtered orthogonal frequency division multiplexing (F-OFDM), assim como femto células na banda de 26 GHz, destinada a altas taxas de transmissão de dados para comunicações de curto alcance. Resultados experimentais demonstram a aplicabilidade da solução proposta para redes 5G, além da viabilidade de utilizar redes ópticas pertencentes a provedores de Internet para favorecer sistemas de nova geração. Por fim, a quarta contribuição trata da implementação de um sistema 5G NR multibanda, assistido por amplificação de RF no domínio óptico. Esse sistema faz uso de um novo método de amplificação, baseado no efeito não linear da mistura de quatro ondas, que vi permite integração direta em redes de transporte envolvendo rádio sobre fibra. Resultados experimentais demonstram ganho de RF igual a 15 dB em uma ampla faixa de frequências (700 MHz até 26 GHz), atendendo simultaneamente tecnologias de quarta e quinta geração. O desempenho digital obtido atendeu aos requisitos estabelecidos pela 3GPP (Third-Generation Partnership Project), indicando a aplicabilidade da solução em questão para distribuir e conjuntamente amplificar sinais de RF em enlaces de fibra óptica
    corecore