85 research outputs found

    Optimal Inertial Sensor Placement and Motion Detection for Epileptic Seizure Patient Monitoring

    Get PDF
    Use of inertial sensory systems to monitor and detect seizure episodes in patients suffering from epilepsy is investigated via numerical simulations and experiments. Numerical simulations employ a mathematical model that is able to predict human body dynamic responses during a typical epileptic seizure. An optimized inertial sensor placement procedure is developed to address achievement of highest possible sensing resolution in determining angular accelerations with minimal errors. In addition, a joint torque estimation procedure is formulated to assist in the future development of a possible detection scheme. Experimental motion data obtained from an epileptic seizure patient as well as a healthy subject via a cluster of inertial measurement sensors formed a basis for proposing a suitable detection scheme based on non-linear response analysis. In particular, preliminary experimental data analysis has shown that the proposed modified Poincaré Map based scheme can become an effective tool in detecting of seizure via inertial measurements

    Seizure prediction : ready for a new era

    Get PDF
    Acknowledgements: The authors acknowledge colleagues in the international seizure prediction group for valuable discussions. L.K. acknowledges funding support from the National Health and Medical Research Council (APP1130468) and the James S. McDonnell Foundation (220020419) and acknowledges the contribution of Dean R. Freestone at the University of Melbourne, Australia, to the creation of Fig. 3.Peer reviewedPostprin

    Whole Brain Network Dynamics of Epileptic Seizures at Single Cell Resolution

    Full text link
    Epileptic seizures are characterised by abnormal brain dynamics at multiple scales, engaging single neurons, neuronal ensembles and coarse brain regions. Key to understanding the cause of such emergent population dynamics, is capturing the collective behaviour of neuronal activity at multiple brain scales. In this thesis I make use of the larval zebrafish to capture single cell neuronal activity across the whole brain during epileptic seizures. Firstly, I make use of statistical physics methods to quantify the collective behaviour of single neuron dynamics during epileptic seizures. Here, I demonstrate a population mechanism through which single neuron dynamics organise into seizures: brain dynamics deviate from a phase transition. Secondly, I make use of single neuron network models to identify the synaptic mechanisms that actually cause this shift to occur. Here, I show that the density of neuronal connections in the network is key for driving generalised seizure dynamics. Interestingly, such changes also disrupt network response properties and flexible dynamics in brain networks, thus linking microscale neuronal changes with emergent brain dysfunction during seizures. Thirdly, I make use of non-linear causal inference methods to study the nature of the underlying neuronal interactions that enable seizures to occur. Here I show that seizures are driven by high synchrony but also by highly non-linear interactions between neurons. Interestingly, these non-linear signatures are filtered out at the macroscale, and therefore may represent a neuronal signature that could be used for microscale interventional strategies. This thesis demonstrates the utility of studying multi-scale dynamics in the larval zebrafish, to link neuronal activity at the microscale with emergent properties during seizures

    Prediction of Synchrostate Transitions in EEG Signals Using Markov Chain Models

    Get PDF
    This is the author accepted manuscript. The final version is available from IEEE via the DOI in this record.This paper proposes a stochastic model using the concept of Markov chains for the inter-state transitions of the millisecond order quasi-stable phase synchronized patterns or synchrostates, found in multi-channel Electroencephalogram (EEG) signals. First and second order transition probability matrices are estimated for Markov chain modelling from 100 trials of 128-channel EEG signals during two different face perception tasks. Prediction accuracies with such finite Markov chain models for synchrostate transition are also compared, under a data-partitioning based cross-validation scheme.The work presented in this paper was supported by FP7 EU funded MICHELANGELO project, Grant Agreement #288241

    Prediction of Synchrostate Transitions in EEG Signals Using Markov Chain Models

    Full text link

    Dynamical Modeling Techniques for Biological Time Series Data

    Get PDF
    The present thesis is articulated over two main topics which have in common the modeling of the dynamical properties of complex biological systems from large-scale time-series data. On one hand, this thesis analyzes the inverse problem of reconstructing Gene Regulatory Networks (GRN) from gene expression data. This first topic seeks to reverse-engineer the transcriptional regulatory mechanisms involved in few biological systems of interest, vital to understand the specificities of their different responses. In the light of recent mathematical developments, a novel, flexible and interpretable modeling strategy is proposed to reconstruct the dynamical dependencies between genes from short-time series data. In addition, experimental trade-offs and optimal modeling strategies are investigated for given data availability. Consistent literature on these topics was previously surprisingly lacking. The proposed methodology is applied to the study of circadian rhythms, which consists in complex GRN driving most of daily biological activity across many species. On the other hand, this manuscript covers the characterization of dynamically differentiable brain states in Zebrafish in the context of epilepsy and epileptogenesis. Zebrafish larvae represent a valuable animal model for the study of epilepsy due to both their genetic and dynamical resemblance with humans. The fundamental premise of this research is the early apparition of subtle functional changes preceding the clinical symptoms of seizures. More generally, this idea, based on bifurcation theory, can be described by a progressive loss of resilience of the brain and ultimately, its transition from a healthy state to another characterizing the disease. First, the morphological signatures of seizures generated by distinct pathological mechanisms are investigated. For this purpose, a range of mathematical biomarkers that characterizes relevant dynamical aspects of the neurophysiological signals are considered. Such mathematical markers are later used to address the subtle manifestations of early epileptogenic activity. Finally, the feasibility of a probabilistic prediction model that indicates the susceptibility of seizure emergence over time is investigated. The existence of alternative stable system states and their sudden and dramatic changes have notably been observed in a wide range of complex systems such as in ecosystems, climate or financial markets

    Mean field modelling of human EEG: application to epilepsy

    Get PDF
    Aggregated electrical activity from brain regions recorded via an electroencephalogram (EEG), reveal that the brain is never at rest, producing a spectrum of ongoing oscillations that change as a result of different behavioural states and neurological conditions. In particular, this thesis focusses on pathological oscillations associated with absence seizures that typically affect 2–16 year old children. Investigation of the cellular and network mechanisms for absence seizures studies have implicated an abnormality in the cortical and thalamic activity in the generation of absence seizures, which have provided much insight to the potential cause of this disease. A number of competing hypotheses have been suggested, however the precise cause has yet to be determined. This work attempts to provide an explanation of these abnormal rhythms by considering a physiologically based, macroscopic continuum mean-field model of the brain's electrical activity. The methodology taken in this thesis is to assume that many of the physiological details of the involved brain structures can be aggregated into continuum state variables and parameters. The methodology has the advantage to indirectly encapsulate into state variables and parameters, many known physiological mechanisms underlying the genesis of epilepsy, which permits a reduction of the complexity of the problem. That is, a macroscopic description of the involved brain structures involved in epilepsy is taken and then by scanning the parameters of the model, identification of state changes in the system are made possible. Thus, this work demonstrates how changes in brain state as determined in EEG can be understood via dynamical state changes in the model providing an explanation of absence seizures. Furthermore, key observations from both the model and EEG data motivates a number of model reductions. These reductions provide approximate solutions of seizure oscillations and a better understanding of periodic oscillations arising from the involved brain regions. Local analysis of oscillations are performed by employing dynamical systems theory which provide necessary and sufficient conditions for their appearance. Finally local and global stability is then proved for the reduced model, for a reduced region in the parameter space. The results obtained in this thesis can be extended and suggestions are provided for future progress in this area

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Deep Learning and parallelization of Meta-heuristic Methods for IoT Cloud

    Get PDF
    Healthcare 4.0 is one of the Fourth Industrial Revolution’s outcomes that make a big revolution in the medical field. Healthcare 4.0 came with more facilities advantages that improved the average life expectancy and reduced population mortality. This paradigm depends on intelligent medical devices (wearable devices, sensors), which are supposed to generate a massive amount of data that need to be analyzed and treated with appropriate data-driven algorithms powered by Artificial Intelligence such as machine learning and deep learning (DL). However, one of the most significant limits of DL techniques is the long time required for the training process. Meanwhile, the realtime application of DL techniques, especially in sensitive domains such as healthcare, is still an open question that needs to be treated. On the other hand, meta-heuristic achieved good results in optimizing machine learning models. The Internet of Things (IoT) integrates billions of smart devices that can communicate with one another with minimal human intervention. IoT technologies are crucial in enhancing several real-life smart applications that can improve life quality. Cloud Computing has emerged as a key enabler for IoT applications because it provides scalable and on-demand, anytime, anywhere access to the computing resources. In this thesis, we are interested in improving the efficacity and performance of Computer-aided diagnosis systems in the medical field by decreasing the complexity of the model and increasing the quality of data. To accomplish this, three contributions have been proposed. First, we proposed a computer aid diagnosis system for neonatal seizures detection using metaheuristics and convolutional neural network (CNN) model to enhance the system’s performance by optimizing the CNN model. Secondly, we focused our interest on the covid-19 pandemic and proposed a computer-aided diagnosis system for its detection. In this contribution, we investigate Marine Predator Algorithm to optimize the configuration of the CNN model that will improve the system’s performance. In the third contribution, we aimed to improve the performance of the computer aid diagnosis system for covid-19. This contribution aims to discover the power of optimizing the data using different AI methods such as Principal Component Analysis (PCA), Discrete wavelet transform (DWT), and Teager Kaiser Energy Operator (TKEO). The proposed methods and the obtained results were validated with comparative studies using benchmark and public medical data
    • …
    corecore