19,758 research outputs found

    Towards cloud based big data analytics for smart future cities

    Get PDF
    © 2015, Khan et al.; licensee Springer. A large amount of land-use, environment, socio-economic, energy and transport data is generated in cities. An integrated perspective of managing and analysing such big data can answer a number of science, policy, planning, governance and business questions and support decision making in enabling a smarter environment. This paper presents a theoretical and experimental perspective on the smart cities focused big data management and analysis by proposing a cloud-based analytics service. A prototype has been designed and developed to demonstrate the effectiveness of the analytics service for big data analysis. The prototype has been implemented using Hadoop and Spark and the results are compared. The service analyses the Bristol Open data by identifying correlations between selected urban environment indicators. Experiments are performed using Hadoop and Spark and results are presented in this paper. The data pertaining to quality of life mainly crime and safety & economy and employment was analysed from the data catalogue to measure the indicators spread over years to assess positive and negative trends

    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic

    Get PDF
    Preparing for a Northwest Passage: A Workshop on the Role of New England in Navigating the New Arctic (March 25 - 27, 2018 -- The University of New Hampshire) paired two of NSF\u27s 10 Big Ideas: Navigating the New Arctic and Growing Convergence Research at NSF. During this event, participants assessed economic, environmental, and social impacts of Arctic change on New England and established convergence research initiatives to prepare for, adapt to, and respond to these effects. Shipping routes through an ice-free Northwest Passage in combination with modifications to ocean circulation and regional climate patterns linked to Arctic ice melt will affect trade, fisheries, tourism, coastal ecology, air and water quality, animal migration, and demographics not only in the Arctic but also in lower latitude coastal regions such as New England. With profound changes on the horizon, this is a critical opportunity for New England to prepare for uncertain yet inevitable economic and environmental impacts of Arctic change

    San Francisco Bay: Preparing for the next level

    Get PDF
    This report provides new insights on the impacts climate change poses on San Francisco Bay, the opportunities this challenge brings and some potential guidelines on how to move forward, as the Bay Area continues to position itself in leading the way nationally and internationally on climate change adaptation. This report is also a landmark in the cooperation between the Netherlands and California on climate change adaptation. A team of professionals from both sides of the ocean has worked on this projec

    The science-policy interfaces of the European network for observing our changing planet : From Earth Observation data to policy-oriented decisions

    Get PDF
    This paper reports on major outcomes of the ERA-PLANET (The European network for observing our changing planet) project, which was funded under Horizon 2020 ERA-net co-funding scheme. ERA-PLANET strengthened the European Research Area in the domain of Earth Observation (EO) in coherence with the European partici-pation to Group on Earth Observation and the Copernicus European Union's Earth Observation programme. ERA -PLANET was implemented through four projects focused on smart cities and resilient societies (SMURBS), resource efficiency and environmental management (GEOEssential), global changes and environmental treaties (iGOSP) and polar areas and natural resources (iCUPE). These projects developed specific science-policy workflows and interfaces to address selected environmental policy issues and design cost-effective strategies aiming to achieve targeted objectives. Key Enabling Technologies were implemented to enhancing 'data to knowledge' transition for supporting environmental policy making. Data cube technologies, the Virtual Earth Laboratory, Earth Observation ontologies and Knowledge Platforms were developed and used for such applications.SMURBS brought a substantial contribution to resilient cities and human settlements topics that were adopted by GEO as its 4th engagement priority, bringing the urban resilience topic in the GEO agenda on par with climate change, sustainable development and disaster risk reduction linked to environmental policies. GEOEssential is contributing to the development of Essential Variables (EVs) concept, which is encouraging and should allow the EO community to complete the description of the Earth System with EVs in a close future. This will clearly improve our capacity to address intertwined environmental and development policies as a Nexus.iGOSP supports the implementation of the GEO Flagship on Mercury (GOS4M) and the GEO Initiative on POPs (GOS4POPs) by developing a new integrated approach for global real-time monitoring of environmental quality with respect to air, water and human matrices contamination by toxic substances, like mercury and persistent organic pollutants. iGOSP developed end-user-oriented Knowledge Hubs that provide data repository systems integrated with data management consoles and knowledge information systems.The main outcomes from iCUPE are the novel and comprehensive data sets and a modelling activity that contributed to delivering science-based insights for the Arctic region. Applications enable defining and moni-toring of Arctic Essential Variables and sets up processes towards UN2030 SDGs that include health (SDG 3), clean water resources and sanitation (SDGs 6 and 14).Peer reviewe

    Mapping and assessment of ecosystems and their services. Urban ecosystems

    Get PDF
    Action 5 of the EU Biodiversity Strategy to 2020 requires member states to Map and Assess the state of Ecosystems and their Services (MAES). This report provides guidance for mapping and assessment of urban ecosystems. The MAES urban pilot is a collaboration between the European Commission, the European Environment Agency, volunteering Member States and cities, and stakeholders. Its ultimate goal is to deliver a knowledge base for policy and management of urban ecosystems by analysing urban green infrastructure, condition of urban ecosystems and ecosystem services. This report presents guidance for mapping urban ecosystems and includes an indicator framework to assess the condition of urban ecosystems and urban ecosystem services. The scientific framework of mapping and assessment is designed to support in particular urban planning policy and policy on green infrastructure at urban, metropolitan and regional scales. The results are based on the following different sources of information: a literature survey of 54 scientific articles, an online-survey (on urban ecosystems, related policies and planning instruments and with participation of 42 cities), ten case studies (Portugal: Cascais, Oeiras, Lisbon; Italy: Padua, Trento, Rome; The Netherlands: Utrecht; Poland: PoznaƄ; Spain: Barcelona; Norway: Oslo), and a two-day expert workshop. The case studies constituted the core of the MAES urban pilot. They provided real examples and applications of how mapping and assessment can be organized to support policy; on top, they provided the necessary expertise to select a set of final indicators for condition and ecosystem services. Urban ecosystems or cities are defined here as socio-ecological systems which are composed of green infrastructure and built infrastructure. Urban green infrastructure (GI) is understood in this report as the multi-functional network of urban green spaces situated within the boundary of the urban ecosystem. Urban green spaces are the structural components of urban GI. This study has shown that there is a large scope for urban ecosystem assessments. Firstly, urban policies increasingly use urban green infrastructure and nature-based solutions in their planning process. Secondly, an increasing amount of data at multiple spatial scales is becoming available to support these policies, to provide a baseline, and to compare or benchmark cities with respect to the extent and management of the urban ecosystem. Concrete examples are given on how to delineate urban ecosystems, how to choose an appropriate spatial scale, and how to map urban ecosystems based on a combination of national or European datasets (including Urban Atlas) and locally collected information (e.g., location of trees). Also examples of typologies for urban green spaces are presented. This report presents an indicator framework which is composed of indicators to assess for urban ecosystem condition and for urban ecosystem services. These are the result of a rigorous selection process and ensure consistent mapping and assessment across Europe. The MAES urban pilot will continue with work on the interface between research and policy. The framework presented in this report needs to be tested and validated across Europe, e.g. on its applicability at city scale, on how far the methodology for measuring ecosystem condition and ecosystem service delivery in urban areas can be used to assess urban green infrastructure and nature-based solutions

    Performance assessment of urban precinct design: a scoping study

    Get PDF
    Executive Summary: Significant advances have been made over the past decade in the development of scientifically and industry accepted tools for the performance assessment of buildings in terms of energy, carbon, water, indoor environment quality etc. For resilient, sustainable low carbon urban development to be realised in the 21st century, however, will require several radical transitions in design performance beyond the scale of individual buildings. One of these involves the creation and application of leading edge tools (not widely available to built environment professions and practitioners) capable of being applied to an assessment of performance across all stages of development at a precinct scale (neighbourhood, community and district) in either greenfield, brownfield or greyfield settings. A core aspect here is the development of a new way of modelling precincts, referred to as Precinct Information Modelling (PIM) that provides for transparent sharing and linking of precinct object information across the development life cycle together with consistent, accurate and reliable access to reference data, including that associated with the urban context of the precinct. Neighbourhoods are the ‘building blocks’ of our cities and represent the scale at which urban design needs to make its contribution to city performance: as productive, liveable, environmentally sustainable and socially inclusive places (COAG 2009). Neighbourhood design constitutes a major area for innovation as part of an urban design protocol established by the federal government (Department of Infrastructure and Transport 2011, see Figure 1). The ability to efficiently and effectively assess urban design performance at a neighbourhood level is in its infancy. This study was undertaken by Swinburne University of Technology, University of New South Wales, CSIRO and buildingSMART Australasia on behalf of the CRC for Low Carbon Living

    Fake or real EU territorialicy? Debating the territorial universe of EU policies

    Get PDF
    This paper provides new insights into the main pillars of the territorial universe of EU policies, by undertaking a systematic overview of European Union (EU) key territorial development reports, agendas and programmes. These include the European Spatial Development Perspective (ESDP), the three Territorial Agendas, and the European Territorial Observatory Network (ESPON) reports. The evidence shows widespread territorialicy, understood as a process of incorporating a territorial driven policy design, implementation and evaluation paradigm, still largely dominated by territorial development and territorial cohesion policy rationales. However, the socioeconomic policy prism continues to dominate the design and analysis of EU policies by EU entities.info:eu-repo/semantics/publishedVersio

    A Next, Big Step for the West: Using Model Legislation to Create A Water-Climate Element in Local Comprehensive Plans

    Get PDF
    The West is witnessing early, important efforts to join water supply and land use planning, and the reality of climate change makes this convergence all the more critical. Local comprehensive planning presents itself as an existing and indispensable tool for unifying important planning efforts in the areas of land use, water, and climate change. As the primary regulators of land use, local governments are at the front line of regulating a myriad of environmental concerns. They are also integral partners in planning and implementing water-related initiatives alongside tribal, state, federal, and private partners. The West’s potential for broad-based action is greatly increased if water and climate become an essential, required element of local comprehensive planning. This article thus calls for a new, freestanding “water-climate element” in comprehensive planning that better prepares our communities for the important task of managing water in wise, resilient, and collaborative ways. Part I summarizes the first legal steps being taken to integrate water-land use planning, predominantly through assured supply laws. This first level of integration alone is no small task since it requires a realignment of historically separate legal spheres in which water law is the domain of the state and land use is the domain of the local government. Yet there is more to be done. Part II argues for an expansion of water-land use planning to include climate planning, and discusses the innovative work that some communities are generating in this area. Part III illustrates why model legislation for a “water-climate” element in comprehensive planning is a next, big step to bring land use, water, and climate together. It then describes the key provisions of such model legislation. The article concludes that if western states require local water-climate planning, there will be improved community preparedness and more robust inter-jurisdictional cooperation regarding shared land and water resources. Thus, a water-climate element is a practical and critical part of integrating water, land use, and climate planning in the West
    • 

    corecore