1,863 research outputs found

    Multi-agent system for flood forecasting in Tropical River Basin

    Get PDF
    It is well known, the problems related to the generation of floods, their control, and management, have been treated with traditional hydrologic modeling tools focused on the study and the analysis of the precipitation-runoff relationship, a physical process which is driven by the hydrological cycle and the climate regime and that is directly proportional to the generation of floodwaters. Within the hydrological discipline, they classify these traditional modeling tools according to three principal groups, being the first group defined as trial-and-error models (e.g., "black-models"), the second group are the conceptual models, which are categorized in three main sub-groups as "lumped", "semi-lumped" and "semi-distributed", according to the special distribution, and finally, models that are based on physical processes, known as "white-box models" are the so-called "distributed-models". On the other hand, in engineering applications, there are two types of models used in streamflow forecasting, and which are classified concerning the type of measurements and variables required as "physically based models", as well as "data-driven models". The Physically oriented prototypes present an in-depth account of the dynamics related to the physical aspects that occur internally among the different systems of a given hydrographic basin. However, aside from being laborious to implement, they rely thoroughly on mathematical algorithms, and an understanding of these interactions requires the abstraction of mathematical concepts and the conceptualization of the physical processes that are intertwined among these systems. Besides, models determined by data necessitates an a-priori understanding of the physical laws controlling the process within the system, and they are bound to mathematical formulations, which require a lot of numeric information for field adjustments. Therefore, these models are remarkably different from each other because of their needs for data, and their interpretation of physical phenomena. Although there is considerable progress in hydrologic modeling for flood forecasting, several significant setbacks remain unresolved, given the stochastic nature of the hydrological phenomena, is the challenge to implement user-friendly, re-usable, robust, and reliable forecasting systems, the amount of uncertainty they must deal with when trying to solve the flood forecasting problem. However, in the past decades, with the growing environment and development of the artificial intelligence (AI) field, some researchers have seldomly attempted to deal with the stochastic nature of hydrologic events with the application of some of these techniques. Given the setbacks to hydrologic flood forecasting previously described this thesis research aims to integrate the physics-based hydrologic, hydraulic, and data-driven models under the paradigm of Multi-agent Systems for flood forecasting by designing and developing a multi-agent system (MAS) framework for flood forecasting events within the scope of tropical watersheds. With the emergence of the agent technologies, the "agent-based modeling" and "multiagent systems" simulation methods have provided applications for some areas of hydro base management like flood protection, planning, control, management, mitigation, and forecasting to combat the shocks produced by floods on society; however, all these focused on evacuation drills, and the latter not aimed at the tropical river basin, whose hydrological regime is extremely unique. In this catchment modeling environment approach, it was applied the multi-agent systems approach as a surrogate of the conventional hydrologic model to build a system that operates at the catchment level displayed with hydrometric stations, that use the data from hydrometric sensors networks (e.g., rainfall, river stage, river flow) captured, stored and administered by an organization of interacting agents whose main aim is to perform flow forecasting and awareness, and in so doing enhance the policy-making process at the watershed level. Section one of this document surveys the status of the current research in hydrologic modeling for the flood forecasting task. It is a journey through the background of related concerns to the hydrological process, flood ontologies, management, and forecasting. The section covers, to a certain extent, the techniques, methods, and theoretical aspects and methods of hydrological modeling and their types, from the conventional models to the present-day artificial intelligence prototypes, making special emphasis on the multi-agent systems, as most recent modeling methodology in the hydrological sciences. However, it is also underlined here that the section does not contribute to an all-inclusive revision, rather its purpose is to serve as a framework for this sort of work and a path to underline the significant aspects of the works. In section two of the document, it is detailed the conceptual framework for the suggested Multiagent system in support of flood forecasting. To accomplish this task, several works need to be carried out such as the sketching and implementation of the system’s framework with the (Belief-Desire-Intention model) architecture for flood forecasting events within the concept of the tropical river basin. Contributions of this proposed architecture are the replacement of the conventional hydrologic modeling with the use of multi-agent systems, which makes it quick for hydrometric time-series data administration and modeling of the precipitation-runoff process which conveys to flood in a river course. Another advantage is the user-friendly environment provided by the proposed multi-agent system platform graphical interface, the real-time generation of graphs, charts, and monitors with the information on the immediate event taking place in the catchment, which makes it easy for the viewer with some or no background in data analysis and their interpretation to get a visual idea of the information at hand regarding the flood awareness. The required agents developed in this multi-agent system modeling framework for flood forecasting have been trained, tested, and validated under a series of experimental tasks, using the hydrometric series information of rainfall, river stage, and streamflow data collected by the hydrometric sensor agents from the hydrometric sensors.Como se sabe, los problemas relacionados con la generación de inundaciones, su control y manejo, han sido tratados con herramientas tradicionales de modelado hidrológico enfocados al estudio y análisis de la relación precipitación-escorrentía, proceso físico que es impulsado por el ciclo hidrológico y el régimen climático y este esta directamente proporcional a la generación de crecidas. Dentro de la disciplina hidrológica, clasifican estas herramientas de modelado tradicionales en tres grupos principales, siendo el primer grupo el de modelos empíricos (modelos de caja negra), modelos conceptuales (o agrupados, semi-agrupados o semi-distribuidos) dependiendo de la distribución espacial y, por último, los basados en la física, modelos de proceso (o "modelos de caja blanca", y/o distribuidos). En este sentido, clasifican las aplicaciones de predicción de caudal fluvial en la ingeniería de recursos hídricos en dos tipos con respecto a los valores y parámetros que requieren en: modelos de procesos basados en la física y la categoría de modelos impulsados por datos. Los modelos basados en la física proporcionan una descripción detallada de la dinámica relacionada con los aspectos físicos que ocurren internamente entre los diferentes sistemas de una cuenca hidrográfica determinada. Sin embargo, aparte de ser complejos de implementar, se basan completamente en algoritmos matemáticos, y la comprensión de estas interacciones requiere la abstracción de conceptos matemáticos y la conceptualización de los procesos físicos que se entrelazan entre estos sistemas. Además, los modelos impulsados por datos no requieren conocimiento de los procesos físicos que gobiernan, sino que se basan únicamente en ecuaciones empíricas que necesitan una gran cantidad de datos y requieren calibración de los datos en el sitio. Los dos modelos difieren significativamente debido a sus requisitos de datos y de cómo expresan los fenómenos físicos. La elaboración de modelos hidrológicos para el pronóstico de inundaciones ha dado grandes pasos, pero siguen sin resolverse algunos contratiempos importantes, dada la naturaleza estocástica de los fenómenos hidrológicos, es el desafío de implementar sistemas de pronóstico fáciles de usar, reutilizables, robustos y confiables, la cantidad de incertidumbre que deben afrontar al intentar resolver el problema de la predicción de inundaciones. Sin embargo, en las últimas décadas, con el entorno creciente y el desarrollo del campo de la inteligencia artificial (IA), algunos investigadores rara vez han intentado abordar la naturaleza estocástica de los eventos hidrológicos con la aplicación de algunas de estas técnicas. Dados los contratiempos en el pronóstico de inundaciones hidrológicas descritos anteriormente, esta investigación de tesis tiene como objetivo integrar los modelos hidrológicos, basados en la física, hidráulicos e impulsados por datos bajo el paradigma de Sistemas de múltiples agentes para el pronóstico de inundaciones por medio del bosquejo y desarrollo del marco de trabajo del sistema multi-agente (MAS) para los eventos de predicción de inundaciones en el contexto de cuenca hidrográfica tropical. Con la aparición de las tecnologías de agentes, se han emprendido algunos enfoques de simulación recientes en la investigación hidrológica con modelos basados en agentes y sistema multi-agente, principalmente en alerta por inundaciones, seguridad y planificación de inundaciones, control y gestión de inundaciones y pronóstico de inundaciones, todos estos enfocado a simulacros de evacuación, y este último no dirigido a la cuenca tropical, cuyo régimen hidrológico es extremadamente único. En este enfoque de entorno de modelado de cuencas, se aplican los enfoques de sistemas multi-agente como un sustituto del modelado hidrológico convencional para construir un sistema que opera a nivel de cuenca con estaciones hidrométricas desplegadas, que utilizan los datos de redes de sensores hidrométricos (por ejemplo, lluvia , nivel del río, caudal del río) capturado, almacenado y administrado por una organización de agentes interactuantes cuyo objetivo principal es realizar pronósticos de caudal y concientización para mejorar las capacidades de soporte en la formulación de políticas a nivel de cuenca hidrográfica. La primera sección de este documento analiza el estado del arte sobre la investigación actual en modelos hidrológicos para la tarea de pronóstico de inundaciones. Es un viaje a través de los antecedentes preocupantes relacionadas con el proceso hidrológico, las ontologías de inundaciones, la gestión y la predicción. El apartado abarca, en cierta medida, las técnicas, métodos y aspectos teóricos y métodos del modelado hidrológico y sus tipologías, desde los modelos convencionales hasta los prototipos de inteligencia artificial actuales, haciendo hincapié en los sistemas multi-agente, como un enfoque de simulación reciente en la investigación hidrológica. Sin embargo, se destaca que esta sección no contribuye a una revisión integral, sino que su propósito es servir de marco para este tipo de trabajos y una guía para subrayar los aspectos significativos de los trabajos. En la sección dos del documento, se detalla el marco de trabajo propuesto para el sistema multi-agente para el pronóstico de inundaciones. Los trabajos realizados comprendieron el diseño y desarrollo del marco de trabajo del sistema multi-agente con la arquitectura (modelo Creencia-Deseo-Intención) para la predicción de eventos de crecidas dentro del concepto de cuenca hidrográfica tropical. Las contribuciones de esta arquitectura propuesta son el reemplazo del modelado hidrológico convencional con el uso de sistemas multi-agente, lo que agiliza la administración de las series de tiempo de datos hidrométricos y el modelado del proceso de precipitación-escorrentía que conduce a la inundación en el curso de un río. Otra ventaja es el entorno amigable proporcionado por la interfaz gráfica de la plataforma del sistema multi-agente propuesto, la generación en tiempo real de gráficos, cuadros y monitores con la información sobre el evento inmediato que tiene lugar en la cuenca, lo que lo hace fácil para el espectador con algo o sin experiencia en análisis de datos y su interpretación para tener una idea visual de la información disponible con respecto a la cognición de las inundaciones. Los agentes necesarios desarrollados en este marco de modelado de sistemas multi-agente para el pronóstico de inundaciones han sido entrenados, probados y validados en una serie de tareas experimentales, utilizando la información de la serie hidrométrica de datos de lluvia, nivel del río y flujo del curso de agua recolectados por los agentes sensores hidrométricos de los sensores hidrométricos de campo.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidente: María Araceli Sanchis de Miguel.- Secretario: Juan Gómez Romero.- Vocal: Juan Carlos Corrale

    Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review

    Get PDF
    none5noNatural disasters cause enormous damage and losses every year, both economic and in terms of human lives. It is essential to develop systems to predict disasters and to generate and disseminate timely warnings. Recently, technologies such as the Internet of Things solutions have been integrated into alert systems to provide an effective method to gather environmental data and produce alerts. This work reviews the literature regarding Internet of Things solutions in the field of Early Warning for different natural disasters: floods, earthquakes, tsunamis, and landslides. The aim of the paper is to describe the adopted IoT architectures, define the constraints and the requirements of an Early Warning system, and systematically determine which are the most used solutions in the four use cases examined. This review also highlights the main gaps in literature and provides suggestions to satisfy the requirements for each use case based on the articles and solutions reviewed, particularly stressing the advantages of integrating a Fog/Edge layer in the developed IoT architectures.openEsposito M.; Palma L.; Belli A.; Sabbatini L.; Pierleoni P.Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P

    Role of Machine Learning, Deep Learning and WSN in Disaster Management: A Review and Proposed Architecture

    Get PDF
    Disasters are occurrences that have the potential to adversely affect a community via casualties, ecological damage, or monetary losses. Due to its distinctive geoclimatic characteristics, India has always been susceptible to natural calamities. Disaster Management is the management of disaster prevention, readiness, response, and recovery tasks in a systematic manner. This paper reviews various types of disasters and their management approaches implemented by researchers using Wireless Sensor Networks (WSNs) and machine learning techniques. It also compares and contrasts various prediction algorithms and uses the optimal algorithm on multiple flood prediction datasets. After understanding the drawbacks of existing datasets, authors have developed a new dataset for Mumbai, Maharashtra consisting of various attributes for flood prediction. The performance of the optimal algorithm on the dataset is seen by the training, validation and testing accuracy of 100%, 98.57% and 77.59% respectively

    Intelligent urban water infrastructure management

    Get PDF
    Copyright © 2013 Indian Institute of ScienceUrban population growth together with other pressures, such as climate change, create enormous challenges to provision of urban infrastructure services, including gas, electricity, transport, water, etc. Smartgrid technology is viewed as the way forward to ensure that infrastructure networks are fl exible, accessible, reliable and economical. “Intelligent water networks” take advantage of the latest information and communication technologies to gather and act on information to minimise waste and deliver more sustainable water services. The effective management of water distribution, urban drainage and sewerage infrastructure is likely to require increasingly sophisticated computational techniques to keep pace with the level of data that is collected from measurement instruments in the field. This paper describes two examples of intelligent systems developed to utilise this increasingly available real-time sensed information in the urban water environment. The first deals with the failure-management decision-support system for water distribution networks, NEPTUNE, that takes advantage of intelligent computational methods and tools applied to near real-time logger data providing pressures, flows and tank levels at selected points throughout the system. The second, called RAPIDS, deals with urban drainage systems and the utilisation of rainfall data to predict flooding of urban areas in near real-time. The two systems have the potential to provide early warning and scenario testing for decision makers within reasonable time, this being a key requirement of such systems. Computational methods that require hours or days to run will not be able to keep pace with fast-changing situations such as pipe bursts or manhole flooding and thus the systems developed are able to react in close to real time.Engineering and Physical Sciences Research CouncilUK Water Industry ResearchYorkshire Wate

    Converging Human Intelligence With AI Systems to Advance Flood Evacuation Decision Making

    Get PDF
    The powers that artificial intelligence (AI) has developed are astounding, with recent success in integrating into a human cognitive workflow. AI will attain its full potential only if, as part of its intelligence, it also actively teams up with humans to co-create solutions. Combining AI simulation with human understanding and strategic abilities through data convergence may optimize the process and provide a capacity akin to teaming intelligence. This thesis will introduce the concepts of Human AI Convergence (HAC) capabilities for flood evacuation decision-making. The concept introduced in this thesis is the first step toward the HAC concept in weather disaster applications. This research demonstrates a synergy between humans and AI by integrating the data produced by humans through social media with an AI system to enhance a flood evacuation decision-making problem. The prediction from Long short-term memory (LSTM) and a river hydraulic model, i.e., Height Above Nearest Drainage (HAND), is integrated with human data from X (previously Twitter) to visualize flood inundation areas, which acts as a 3rd party agent for a HAC system. The goal is to synthesize and analyze HAC competence in flood evacuation emergency management and harness the full potential of AI as a partner in real-time planning and decision-making. This thesis has explored why HAC intelligence is essential to emergency planning and decision-making, providing a general structure for researchers to use HAC to devise effective systems that cooperate well and evaluate state-of-the-art, and, in doing so, providing a research agenda and a roadmap for future flood evacuation emergency management, rescue, and decision making. This state-of-the-art flood evacuation product stands to advance the frontier of human-AI collaborative research significantly

    IoT-enabled Flood Severity Prediction via Ensemble Machine Learning Models

    Get PDF
    River flooding is a natural phenomenon that can have a devastating effect on human life and economic losses. There have been various approaches in studying river flooding; however, insufficient understanding and limited knowledge about flooding conditions hinder the development of prevention and control measures for this natural phenomenon. This paper entails a new approach for the prediction of water level in association with flood severity using the ensemble model. Our approach leverages the latest developments in the Internet of Things (IoT) and machine learning for the automated analysis of flood data that might be useful to prevent natural disasters. Research outcomes indicate that ensemble learning provides a more reliable tool to predict flood severity levels. The experimental results indicate that the ensemble learning using the Long-Short Term memory model and random forest outperformed individual models with a sensitivity, specificity and accuracy of 71.4%, 85.9%, 81.13%, respectively

    Graph Neural Network for spatiotemporal data: methods and applications

    Full text link
    In the era of big data, there has been a surge in the availability of data containing rich spatial and temporal information, offering valuable insights into dynamic systems and processes for applications such as weather forecasting, natural disaster management, intelligent transport systems, and precision agriculture. Graph neural networks (GNNs) have emerged as a powerful tool for modeling and understanding data with dependencies to each other such as spatial and temporal dependencies. There is a large amount of existing work that focuses on addressing the complex spatial and temporal dependencies in spatiotemporal data using GNNs. However, the strong interdisciplinary nature of spatiotemporal data has created numerous GNNs variants specifically designed for distinct application domains. Although the techniques are generally applicable across various domains, cross-referencing these methods remains essential yet challenging due to the absence of a comprehensive literature review on GNNs for spatiotemporal data. This article aims to provide a systematic and comprehensive overview of the technologies and applications of GNNs in the spatiotemporal domain. First, the ways of constructing graphs from spatiotemporal data are summarized to help domain experts understand how to generate graphs from various types of spatiotemporal data. Then, a systematic categorization and summary of existing spatiotemporal GNNs are presented to enable domain experts to identify suitable techniques and to support model developers in advancing their research. Moreover, a comprehensive overview of significant applications in the spatiotemporal domain is offered to introduce a broader range of applications to model developers and domain experts, assisting them in exploring potential research topics and enhancing the impact of their work. Finally, open challenges and future directions are discussed

    Cyber-Physical Systems for Smart Water Networks: A Review

    Get PDF
    There is a growing demand to equip Smart Water Networks (SWN) with advanced sensing and computation capabilities in order to detect anomalies and apply autonomous event-triggered control. Cyber-Physical Systems (CPSs) have emerged as an important research area capable of intelligently sensing the state of SWN and reacting autonomously in scenarios of unexpected crisis development. Through computational algorithms, CPSs can integrate physical components of SWN, such as sensors and actuators, and provide technological frameworks for data analytics, pertinent decision making, and control. The development of CPSs in SWN requires the collaboration of diverse scientific disciplines such as civil, hydraulics, electronics, environment, computer science, optimization, communication, and control theory. For efficient and successful deployment of CPS in SWN, there is a need for a common methodology in terms of design approaches that can involve various scientific disciplines. This paper reviews the state of the art, challenges, and opportunities for CPSs, that could be explored to design the intelligent sensing, communication, and control capabilities of CPS for SWN. In addition, we look at the challenges and solutions in developing a computational framework from the perspectives of machine learning, optimization, and control theory for SWN.acceptedVersio

    Smart Urban Water Networks

    Get PDF
    This book presents the paper form of the Special Issue (SI) on Smart Urban Water Networks. The number and topics of the papers in the SI confirm the growing interest of operators and researchers for the new paradigm of smart networks, as part of the more general smart city. The SI showed that digital information and communication technology (ICT), with the implementation of smart meters and other digital devices, can significantly improve the modelling and the management of urban water networks, contributing to a radical transformation of the traditional paradigm of water utilities. The paper collection in this SI includes different crucial topics such as the reliability, resilience, and performance of water networks, innovative demand management, and the novel challenge of real-time control and operation, along with their implications for cyber-security. The SI collected fourteen papers that provide a wide perspective of solutions, trends, and challenges in the contest of smart urban water networks. Some solutions have already been implemented in pilot sites (i.e., for water network partitioning, cyber-security, and water demand disaggregation and forecasting), while further investigations are required for other methods, e.g., the data-driven approaches for real time control. In all cases, a new deal between academia, industry, and governments must be embraced to start the new era of smart urban water systems

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF
    corecore