93 research outputs found

    Leveraging Client Processing for Location Privacy in Mobile Local Search

    Get PDF
    Usage of mobile services is growing rapidly. Most Internet-based services targeted for PC based browsers now have mobile counterparts. These mobile counterparts often are enhanced when they use user\u27s location as one of the inputs. Even some PC-based services such as point of interest Search, Mapping, Airline tickets, and software download mirrors now use user\u27s location in order to enhance their services. Location-based services are exactly these, that take the user\u27s location as an input and enhance the experience based on that. With increased use of these services comes the increased risk to location privacy. The location is considered an attribute that user\u27s hold as important to their privacy. Compromise of one\u27s location, in other words, loss of location privacy can have several detrimental effects on the user ranging from trivial annoyance to unreasonable persecution. More and more companies in the Internet economy rely exclusively on the huge data sets they collect about users. The more detailed and accurate the data a company has about its users, the more valuable the company is considered. No wonder that these companies are often the same companies that offer these services for free. This gives them an opportunity to collect more accurate location information. Research community in the location privacy protection area had to reciprocate by modeling an adversary that could be the service provider itself. To further drive this point, we show that a well-equipped service provider can infer user\u27s location even if the location information is not directly available by using other information he collects about the user. There is no dearth of proposals of several protocols and algorithms that protect location privacy. A lot of these earlier proposals require a trusted third party to play as an intermediary between the service provider and the user. These protocols use anonymization and/or obfuscation techniques to protect user\u27s identity and/or location. This requirement of trusted third parties comes with its own complications and risks and makes these proposals impractical in real life scenarios. Thus it is preferable that protocols do not require a trusted third party. We look at existing proposals in the area of private information retrieval. We present a brief survey of several proposals in the literature and implement two representative algorithms. We run experiments using different sizes of databases to ascertain their practicability and performance features. We show that private information retrieval based protocols still have long ways to go before they become practical enough for local search applications. We propose location privacy preserving mechanisms that take advantage of the processing power of modern mobile devices and provide configurable levels of location privacy. We propose these techniques both in the single query scenario and multiple query scenario. In single query scenario, the user issues a query to the server and obtains the answer. In the multiple query scenario, the user keeps sending queries as she moves about in the area of interest. We show that the multiple query scenario increases the accuracy of adversary\u27s determination of user\u27s location, and hence improvements are needed to cope with this situation. So, we propose an extension of the single query scenario that addresses this riskier multiple query scenario, still maintaining the practicability and acceptable performance when implemented on a modern mobile device. Later we propose a technique based on differential privacy that is inspired by differential privacy in statistical databases. All three mechanisms proposed by us are implemented in realistic hardware or simulators, run against simulated but real life data and their characteristics ascertained to show that they are practical and ready for adaptation. This dissertation study the privacy issues for location-based services in mobile environment and proposes a set of new techniques that eliminate the need for a trusted third party by implementing efficient algorithms on modern mobile hardware

    Aspects of fractal image compression

    Get PDF

    Quantitative Image Simulation and Analysis of Nanoparticles

    Get PDF

    Sensor Data Integrity Verification for Real-time and Resource Constrained Systems

    Full text link
    Sensors are used in multiple applications that touch our lives and have become an integral part of modern life. They are used in building intelligent control systems in various industries like healthcare, transportation, consumer electronics, military, etc. Many mission-critical applications require sensor data to be secure and authentic. Sensor data security can be achieved using traditional solutions like cryptography and digital signatures, but these techniques are computationally intensive and cannot be easily applied to resource constrained systems. Low complexity data hiding techniques, on the contrary, are easy to implement and do not need substantial processing power or memory. In this applied research, we use and configure the established low complexity data hiding techniques from the multimedia forensics domain. These techniques are used to secure the sensor data transmissions in resource constrained and real-time environments such as an autonomous vehicle. We identify the areas in an autonomous vehicle that require sensor data integrity and propose suitable water-marking techniques to verify the integrity of the data and evaluate the performance of the proposed method against different attack vectors. In our proposed method, sensor data is embedded with application specific metadata and this process introduces some distortion. We analyze this embedding induced distortion and its impact on the overall sensor data quality to conclude that watermarking techniques, when properly configured, can solve sensor data integrity verification problems in an autonomous vehicle.Ph.D.College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttp://deepblue.lib.umich.edu/bitstream/2027.42/167387/3/Raghavendar Changalvala Final Dissertation.pdfDescription of Raghavendar Changalvala Final Dissertation.pdf : Dissertatio

    Proceedings of the 35th WIC Symposium on Information Theory in the Benelux and the 4th joint WIC/IEEE Symposium on Information Theory and Signal Processing in the Benelux, Eindhoven, the Netherlands May 12-13, 2014

    Get PDF
    Compressive sensing (CS) as an approach for data acquisition has recently received much attention. In CS, the signal recovery problem from the observed data requires the solution of a sparse vector from an underdetermined system of equations. The underlying sparse signal recovery problem is quite general with many applications and is the focus of this talk. The main emphasis will be on Bayesian approaches for sparse signal recovery. We will examine sparse priors such as the super-Gaussian and student-t priors and appropriate MAP estimation methods. In particular, re-weighted l2 and re-weighted l1 methods developed to solve the optimization problem will be discussed. The talk will also examine a hierarchical Bayesian framework and then study in detail an empirical Bayesian method, the Sparse Bayesian Learning (SBL) method. If time permits, we will also discuss Bayesian methods for sparse recovery problems with structure; Intra-vector correlation in the context of the block sparse model and inter-vector correlation in the context of the multiple measurement vector problem

    Securing Multi-Layer Communications: A Signal Processing Approach

    Get PDF
    Security is becoming a major concern in this information era. The development in wireless communications, networking technology, personal computing devices, and software engineering has led to numerous emerging applications whose security requirements are beyond the framework of conventional cryptography. The primary motivation of this dissertation research is to develop new approaches to the security problems in secure communication systems, without unduly increasing the complexity and cost of the entire system. Signal processing techniques have been widely applied in communication systems. In this dissertation, we investigate the potential, the mechanism, and the performance of incorporating signal processing techniques into various layers along the chain of secure information processing. For example, for application-layer data confidentiality, we have proposed atomic encryption operations for multimedia data that can preserve standard compliance and are friendly to communications and delegate processing. For multimedia authentication, we have discovered the potential key disclosure problem for popular image hashing schemes, and proposed mitigation solutions. In physical-layer wireless communications, we have discovered the threat of signal garbling attack from compromised relay nodes in the emerging cooperative communication paradigm, and proposed a countermeasure to trace and pinpoint the adversarial relay. For the design and deployment of secure sensor communications, we have proposed two sensor location adjustment algorithms for mobility-assisted sensor deployment that can jointly optimize sensing coverage and secure communication connectivity. Furthermore, for general scenarios of group key management, we have proposed a time-efficient key management scheme that can improve the scalability of contributory key management from O(log n) to O(log(log n)) using scheduling and optimization techniques. This dissertation demonstrates that signal processing techniques, along with optimization, scheduling, and beneficial techniques from other related fields of study, can be successfully integrated into security solutions in practical communication systems. The fusion of different technical disciplines can take place at every layer of a secure communication system to strengthen communication security and improve performance-security tradeoff

    OFDM passive radar employing compressive processing in MIMO configurations

    Get PDF
    A key advantage of passive radar is that it provides a means of performing position detection and tracking without the need for transmission of energy pulses. In this respect, passive radar systems utilising (receiving) orthogonal frequency division multiplexing (OFDM) communications signals from transmitters using OFDM standards such as long term evolution (LTE), WiMax or WiFi, are considered. Receiving a stronger reference signal for the matched filtering, detecting a lower target signature is one of the challenges in the passive radar. Impinging at the receiver, the OFDM waveforms supply two-dimensional virtual uniform rectangul ararray with the first and second dimensions refer to time delays and Doppler frequencies respectively. A subspace method, multiple signals classification (MUSIC) algorithm, demonstrated the signal extraction using multiple time samples. Apply normal measurements, this problem requires high computational resources regarding the number of OFDM subcarriers. For sub-Nyquist sampling, compressive sensing (CS) becomes attractive. A single snap shot measurement can be applied with Basis Pursuit (BP), whereas l1-singular value decomposition (l1-SVD) is applied for the multiple snapshots. Employing multiple transmitters, the diversity in the detection process can be achieved. While a passive means of attaining three-dimensional large-set measurements is provided by co-located receivers, there is a significant computational burden in terms of the on-line analysis of such data sets. In this thesis, the passive radar problem is presented as a mathematically sparse problem and interesting solutions, BP and l1-SVD as well as Bayesian compressive sensing, fast-Besselk, are considered. To increase the possibility of target signal detection, beamforming in the compressive domain is also introduced with the application of conve xoptimization and subspace orthogonality. An interference study is also another problem when reconstructing the target signal. The networks of passive radars are employed using stochastic geometry in order to understand the characteristics of interference, and the effect of signal to interference plus noise ratio (SINR). The results demonstrate the outstanding performance of l1-SVD over MUSIC when employing multiple snapshots. The single snapshot problem along with fast-BesselK multiple-input multiple-output configuration can be solved using fast-BesselK and this allows the compressive beamforming for detection capability

    INTELLIGENT VISION-BASED NAVIGATION SYSTEM

    Get PDF
    This thesis presents a complete vision-based navigation system that can plan and follow an obstacle-avoiding path to a desired destination on the basis of an internal map updated with information gathered from its visual sensor. For vision-based self-localization, the system uses new floor-edges-specific filters for detecting floor edges and their pose, a new algorithm for determining the orientation of the robot, and a new procedure for selecting the initial positions in the self-localization procedure. Self-localization is based on matching visually detected features with those stored in a prior map. For planning, the system demonstrates for the first time a real-world application of the neural-resistive grid method to robot navigation. The neural-resistive grid is modified with a new connectivity scheme that allows the representation of the collision-free space of a robot with finite dimensions via divergent connections between the spatial memory layer and the neuro-resistive grid layer. A new control system is proposed. It uses a Smith Predictor architecture that has been modified for navigation applications and for intermittent delayed feedback typical of artificial vision. A receding horizon control strategy is implemented using Normalised Radial Basis Function nets as path encoders, to ensure continuous motion during the delay between measurements. The system is tested in a simplified environment where an obstacle placed anywhere is detected visually and is integrated in the path planning process. The results show the validity of the control concept and the crucial importance of a robust vision-based self-localization process
    corecore