1,425 research outputs found

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress October 1, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fifth in a series of progress updates and covers the period between 16 May 1987 and 30 September 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the mandate of Congress is that an advanced automation and robotics technology be built to support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy

    Security, privacy and safety evaluation of dynamic and static fleets of drones

    Get PDF
    Inter-connected objects, either via public or private networks are the near future of modern societies. Such inter-connected objects are referred to as Internet-of-Things (IoT) and/or Cyber-Physical Systems (CPS). One example of such a system is based on Unmanned Aerial Vehicles (UAVs). The fleet of such vehicles are prophesied to take on multiple roles involving mundane to high-sensitive, such as, prompt pizza or shopping deliveries to your homes to battlefield deployment for reconnaissance and combat missions. Drones, as we refer to UAVs in this paper, either can operate individually (solo missions) or part of a fleet (group missions), with and without constant connection with the base station. The base station acts as the command centre to manage the activities of the drones. However, an independent, localised and effective fleet control is required, potentially based on swarm intelligence, for the reasons: 1) increase in the number of drone fleets, 2) number of drones in a fleet might be multiple of tens, 3) time-criticality in making decisions by such fleets in the wild, 4) potential communication congestions/lag, and 5) in some cases working in challenging terrains that hinders or mandates-limited communication with control centre (i.e., operations spanning long period of times or military usage of such fleets in enemy territory). This self-ware, mission-focused and independent fleet of drones that potential utilises swarm intelligence for a) air-traffic and/or flight control management, b) obstacle avoidance, c) self-preservation while maintaining the mission criteria, d) collaboration with other fleets in the wild (autonomously) and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.Comment: 12 Pages, 7 Figures, Conference, The 36th IEEE/AIAA Digital Avionics Systems Conference (DASC'17

    Development of an autonomous mobile robot with planning and location in a structured environment

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáWith the advance of technology mobile robots have been increasingly applied in the industry, performing repetitive work with high performance, and in environments that pose risks to human health. The present work plans and develops a mobile robot platform for the micromouse competition. The micromouse consists of a small autonomous mobile robot that, when placed in an unknown labyrinth, is able to map it, search for the best path between the starting point and the goal and travel it in the shortest possible time. To accomplish these tasks, the robot must be able to self-locate, map the maze as it traverses it and plan paths based on the map obtained. The developed self-localization method is based on the odometry, the laser sensors present in the robot and on a previous knowledge of the start point and the configuration of the environment. Several methodologies of locomotion in unknown environment and route planning are analyzed in order to obtain the combination with the best performance. In order to verify the results, the present work is developed in real environment, in 3D simulation and also with a hardware in the loop capability. Labyrinths from previous competitions are used as basis for comparing methodologies and validating results. At the end it presents the algorithm capable of fulfilling all the requirements of the micromouse competition together with the results of its evaluation run.Com o avanço da tecnologia, os robôs móveis têm sido cada vez mais aplicados na indústria, realizando trabalhos repetitivos com alto desempenho e em ambientes que expõem riscos à saúde humana. O presente trabalho planeja e desenvolve um robô móvel para a competição micromouse. O micromouse consiste em um pequeno robô autônomo que, ao ser colocado em um labirinto desconhecido, é capaz de mapeá-lo, procurar o melhor caminho entre o ponto de partida e o objetivo, e percorrê-lo no menor tempo possível. Para realizar estas tarefas, o robô deve ser capaz de se auto-localizar, mapear o labirinto enquanto o percorre e planejar caminhos com base no mapa obtido. O método de auto-localização desenvolvido baseia-se na odometria, nos sensores a laser presentes no robô e em um prévio conhecimento do ponto de início e da configuração do ambiente. Diversas metodologias de locomoção em ambiente desconhecido e planejamento de rotas são analisadas buscando-se obter a combinação com o melhor desempenho. Para averiguação de resultados o presente trabalho desenvolve-se em ambiente real e em simulação 3D com hardware in the loop. Labirintos de competições anteriores são utilizados de base para o comparativo de metodologias e validação de resultados. Ao final apresenta-se o algoritmo capaz de cumprir todas as exigências da competição micromouse juntamente com os resultados em sua corrida de avaliação

    A Broad View on Robot Self-Defense: Rapid Scoping Review and Cultural Comparison

    Get PDF
    With power comes responsibility: as robots become more advanced and prevalent, the role they will play in human society becomes increasingly important. Given that violence is an important problem, the question emerges if robots could defend people, even if doing so might cause harm to someone. The current study explores the broad context of how people perceive the acceptability of such robot self-defense (RSD) in terms of (1) theory, via a rapid scoping review, and (2) public opinion in two countries. As a result, we summarize and discuss: increasing usage of robots capable of wielding force by law enforcement and military, negativity toward robots, ethics and legal questions (including differences to the well-known trolley problem), control in the presence of potential failures, and practical capabilities that such robots might require. Furthermore, a survey was conducted, indicating that participants accepted the idea of RSD, with some cultural differences. We believe that, while substantial obstacles will need to be overcome to realize RSD, society stands to gain from exploring its possibilities over the longer term, toward supporting human well-being in difficult times

    Constructing living buildings: a review of relevant technologies for a novel application of biohybrid robotics

    Get PDF
    Biohybrid robotics takes an engineering approach to the expansion and exploitation of biological behaviours for application to automated tasks. Here, we identify the construction of living buildings and infrastructure as a high-potential application domain for biohybrid robotics, and review technological advances relevant to its future development. Construction, civil infrastructure maintenance and building occupancy in the last decades have comprised a major portion of economic production, energy consumption and carbon emissions. Integrating biological organisms into automated construction tasks and permanent building components therefore has high potential for impact. Live materials can provide several advantages over standard synthetic construction materials, including self-repair of damage, increase rather than degradation of structural performance over time, resilience to corrosive environments, support of biodiversity, and mitigation of urban heat islands. Here, we review relevant technologies, which are currently disparate. They span robotics, self-organizing systems, artificial life, construction automation, structural engineering, architecture, bioengineering, biomaterials, and molecular and cellular biology. In these disciplines, developments relevant to biohybrid construction and living buildings are in the early stages, and typically are not exchanged between disciplines. We, therefore, consider this review useful to the future development of biohybrid engineering for this highly interdisciplinary application.publishe

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems

    Machine Learning Meets Advanced Robotic Manipulation

    Full text link
    Automated industries lead to high quality production, lower manufacturing cost and better utilization of human resources. Robotic manipulator arms have major role in the automation process. However, for complex manipulation tasks, hard coding efficient and safe trajectories is challenging and time consuming. Machine learning methods have the potential to learn such controllers based on expert demonstrations. Despite promising advances, better approaches must be developed to improve safety, reliability, and efficiency of ML methods in both training and deployment phases. This survey aims to review cutting edge technologies and recent trends on ML methods applied to real-world manipulation tasks. After reviewing the related background on ML, the rest of the paper is devoted to ML applications in different domains such as industry, healthcare, agriculture, space, military, and search and rescue. The paper is closed with important research directions for future works

    Application of a mobile robot to spatial mapping of radioactive substances in indoor environment

    Get PDF
    Nuclear medicine requires the use of radioactive substances that can contaminate critical areas (dangerous or hazardous) where the presence of a human must be reduced or avoided. The present work uses a mobile robot in real environment and 3D simulation to develop a method to realize spatial mapping of radioactive substances. The robot should visit all the waypoints arranged in a grid of connectivity that represents the environment. The work presents the methodology to perform the path planning, control and estimation of the robot location. For path planning two methods are approached, one a heuristic method based on observation of problem and another one was carried out an adaptation in the operations of the genetic algorithm. The control of the actuators was based on two methodologies, being the first to follow points and the second to follow trajectories. To locate the real mobile robot, the extended Kalman filter was used to fuse an ultra-wide band sensor with odometry, thus estimating the position and orientation of the mobile agent. The validation of the obtained results occurred using a low cost system with a laser range finder.A medicina nuclear requer o uso de substâncias radioativas que pode vir a contaminar áreas críticas, onde a presença de um ser humano deve ser reduzida ou evitada. O presente trabalho utiliza um robô móvel em ambiente real e em simulação 3D para desenvolver um método para o mapeamento espacial de substâncias radioativas. O robô deve visitar todos os waypoinst dispostos em uma grelha de conectividade que representa o ambiente. O trabalho apresenta a metodologia para realizar o planejamento de rota, controle e estimação da localização do robô. Para o planejamento de rota são abordados dois métodos, um baseado na heurística ao observar o problema e ou outro foi realizado uma adaptação nas operações do algoritmo genético. O controle dos atuadores foi baseado em duas metodologias, sendo a primeira para seguir de pontos e a segunda seguir trajetórias. Para localizar o robô móvel real foi utilizado o filtro de Kalman extendido para a fusão entre um sensor ultra-wide band e odometria, estimando assim a posição e orientação do agente móvel. A validação dos resultados obtidos ocorreu utilizando um sistema de baixo custo com um laser range finder

    Advancing automation and robotics technology for the space station and for the US economy: Submitted to the United States Congress May 15, 1987

    Get PDF
    In April 1985, as required by Public Law 98-371, the NASA Advanced Technology Advisory Committee (ATAC) reported to Congress the results of its studies on advanced automation and robotics technology for use on the space station. This material was documented in the initial report (NASA Technical Memorandum 87566). A further requirement of the Law was that ATAC follow NASA's progress in this area and report to Congress semiannually. This report is the fourth in a series of progress updates and covers the period October 1, 1986 to May 15, 1987. NASA has accepted the basic recommendations of ATAC for its space station efforts. ATAC and NASA agree that the will of Congress is to build an advanced automation and robotics technology base that will support an evolutionary space station program and serve as a highly visible stimulator affecting the long-term U.S. economy. The progress report identifies the work of NASA and the space station study contractors, research in progress, and issues connected with the advancement of automation and robotics technology on the space station
    • …
    corecore