211 research outputs found

    Towards a software defined multi-domain architecture for the internet of things

    Get PDF
    The emerging communication networks tend to aggregate heterogeneous networking infrastructures as well as data flows with very distinct requisites. This implies that the complete satisfaction of Quality of Service (QoS) metrics is very difficult to achieve, using the legacy management solutions. Alternatively, the Software Defined Networking (SDN) paradigm offers a logical centralized management of the necessary network resources for data flows, namely the ones originated in sensor devices. Therefore, this work investigates a solution that meets the QoS requirements of traffic from remote Internet of Thing (IoT) devices. To achieve this goal, we have designed a SDN-based solution that manages a network topology formed by several domains. We assume each network domain is controlled by its own SDN controller. In addition, our solution assumes that the several SDN controllers need to be orchestrated among them to maximize the management efficiency of the available end-to-end network resources. This orchestration is done via an SDN transit domain ruled by the ONOS SDN-IP application. We have emulated network topologies with IoT devices to evaluate the proposed solution in terms of its functionality, robustness against network failures, and QoS support. Analyzing the obtained results, our solution can support a cross-controller SDN domain communication. It is also capable of reacting automatically to topology failures. In addition, it can prioritize the traffic within the network infrastructure, providing to the end users strong guarantees on the desired quality for the exchange of data associated to the applications they aim to use.info:eu-repo/semantics/publishedVersio

    Towards a software defined network based multi-domain architecture for the internet of things

    Get PDF
    The current communication networks are heterogeneous, with a diversity of devices and services that challenge traditional networks, making it difficult to meet quality of service (QoS) requirements. With the advent of software-defined networks (SDN), new tools have emerged to design more flexible networks. SDN offers centralized management for data streams in distributed sensor networks. Thus, the main goal of this dissertation is to investigate a solution that meets the QoS requirements of traffic originating on Internet of Things (IoT) devices. This traffic is transmitted to the Internet in a distributed system with multiple SDN controllers. To achieve the goal, we designed a multi-controller network topology, each managed by its controller. Communication between the domains is done via an SDN traffic domain with the Open Network Operating System (ONOS) controller SDN-IP application. We also emulated a network to test QoS through OpenvSwitch queues. The goal is to create traffic priorities in a network with traditional and simulated IoT devices. According to our tests, we have been able to ensure the SDN inter-domain communication and have proven that our proposal is reactive to a topology failure. In the QoS scenario we have shown that through the insertion of OpenFlow rules, we are able to prioritize traffic and provide guarantees of quality of service. This proves that our proposal is promising for use in scenarios with multiple administrative domains.As redes atuais de comunicação são heterogéneas, com uma diversidade de dispositivos e serviços, que desafiam as redes tradicionais, dificultando a satisfação dos requisitos de qualidade de serviço (QoS). Com o advento das Redes Definidas por Software (SDN), novas ferramentas surgiram para projetar redes mais flexíveis. O SDN oferece uma gestão centralizada para os fluxos de dados em redes distribuídas de sensores. Assim, o principal objetivo desta dissertação é de investigar uma solução que cumpra os requisitos de QoS do tráfego originado em dispositivos de Internet das coisas (IoT). Este tráfego é transmitido para a Internet, num sistema distribuído com múltiplos controladores SDN. Para atingir o objetivo, projetamos uma topologia de rede com múltiplos domínios, cada um gerido pelo seu controlador. A comunicação entre os domínios, é feita através dum domínio de trânsito SDN com a aplicação SDN-IP do controlador Sistema Operativo de Rede Aberta (ONOS). Emulamos também uma rede para testar a QoS através de filas de espera do OpenvSwitch. O objetivo é criar prioridades de tráfego numa rede com dispositivos tradicionais e de IoT simulados. De acordo com os testes realizados, conseguimos garantir a comunicação entre domínios SDN e comprovamos que a nossa proposta é reativa a uma falha na topologia. No cenário do QoS demostramos que, através da inserção de regras OpenFlow, conseguimos priorizar o tráfego e oferecer garantias de qualidade de serviço. Desta forma comprovamos que a nossa proposta é promissora para ser utilizada em cenários com múltiplos domínios administrativos

    Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks

    Full text link
    [ES] La presente tesis aborda el problema del encaminamiento en las redes definidas por software (SDN). Específicamente, aborda el problema del diseño de un protocolo de encaminamiento basado en inteligencia artificial (AI) para garantizar la calidad de servicio (QoS) en transmisiones multimedia. En la primera parte del trabajo, el concepto de SDN es introducido. Su arquitectura, protocolos y ventajas son comentados. A continuación, el estado del arte es presentado, donde diversos trabajos acerca de QoS, encaminamiento, SDN y AI son detallados. En el siguiente capítulo, el controlador SDN, el cual juega un papel central en la arquitectura propuesta, es presentado. Se detalla el diseño del controlador y se compara su rendimiento con otro controlador comúnmente utilizado. Más tarde, se describe las propuestas de encaminamiento. Primero, se aborda la modificación de un protocolo de encaminamiento tradicional. Esta modificación tiene como objetivo adaptar el protocolo de encaminamiento tradicional a las redes SDN, centrado en las transmisiones multimedia. A continuación, la propuesta final es descrita. Sus mensajes, arquitectura y algoritmos son mostrados. Referente a la AI, el capítulo 5 detalla el módulo de la arquitectura que la implementa, junto con los métodos inteligentes usados en la propuesta de encaminamiento. Además, el algoritmo inteligente de decisión de rutas es descrito y la propuesta es comparada con el protocolo de encaminamiento tradicional y con su adaptación a las redes SDN, mostrando un incremento de la calidad final de la transmisión. Finalmente, se muestra y se describe algunas aplicaciones basadas en la propuesta. Las aplicaciones son presentadas para demostrar que la solución presentada en la tesis está diseñada para trabajar en redes heterogéneas.[CA] La present tesi tracta el problema de l'encaminament en les xarxes definides per programari (SDN). Específicament, tracta el problema del disseny d'un protocol d'encaminament basat en intel·ligència artificial (AI) per a garantir la qualitat de servici (QoS) en les transmissions multimèdia. En la primera part del treball, s'introdueix les xarxes SDN. Es comenten la seva arquitectura, els protocols i els avantatges. A continuació, l'estat de l'art és presentat, on es detellen els diversos treballs al voltant de QoS, encaminament, SDN i AI. Al següent capítol, el controlador SDN, el qual juga un paper central a l'arquitectura proposta, és presentat. Es detalla el disseny del controlador i es compara el seu rendiment amb altre controlador utilitzat comunament. Més endavant, es descriuen les propostes d'encaminament. Primer, s'aborda la modificació d'un protocol d'encaminament tradicional. Aquesta modificació té com a objectiu adaptar el protocol d'encaminament tradicional a les xarxes SDN, centrat a les transmissions multimèdia. A continuació, la proposta final és descrita. Els seus missatges, arquitectura i algoritmes són mostrats. Pel que fa a l'AI, el capítol 5 detalla el mòdul de l'arquitectura que la implementa, junt amb els mètodes intel·ligents usats en la proposta d'encaminament. A més a més, l'algoritme intel·ligent de decisió de rutes és descrit i la proposta és comparada amb el protocol d'encaminament tradicional i amb la seva adaptació a les xarxes SDN, mostrant un increment de la qualitat final de la transmissió. Finalment, es mostra i es descriuen algunes aplicacions basades en la proposta. Les aplicacions són presentades per a demostrar que la solució presentada en la tesi és dissenyada per a treballar en xarxes heterogènies.[EN] This thesis addresses the problem of routing in Software Defined Networks (SDN). Specifically, the problem of designing a routing protocol based on Artificial Intelligence (AI) for ensuring Quality of Service (QoS) in multimedia transmissions. In the first part of the work, SDN is introduced. Its architecture, protocols and advantages are discussed. Then, the state of the art is presented, where several works regarding QoS, routing, SDN and AI are detailed. In the next chapter, the SDN controller, which plays the central role in the proposed architecture, is presented. The design of the controller is detailed and its performance compared to another common controller. Later, the routing proposals are described. First, a modification of a traditional routing protocol is discussed. This modification intends to adapt a traditional routing protocol to SDN, focused on multimedia transmissions. Then, the final proposal is described. Its messages, architecture and algorithms are depicted. As regards AI, chapter 5 details the module of the architecture that implements it, along with all the intelligent methods used in the routing proposal. Furthermore, the intelligent route decision algorithm is described and the final proposal is compared to the traditional routing protocol and its adaptation to SDN, showing an increment of the end quality of the transmission. Finally, some applications based on the routing proposal are described. The applications are presented to demonstrate that the proposed solution can work with heterogeneous networks.Rego Máñez, A. (2020). Intelligent multimedia flow transmission through heterogeneous networks using cognitive software defined networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/160483TESI

    Hybrid SDN Evolution: A Comprehensive Survey of the State-of-the-Art

    Full text link
    Software-Defined Networking (SDN) is an evolutionary networking paradigm which has been adopted by large network and cloud providers, among which are Tech Giants. However, embracing a new and futuristic paradigm as an alternative to well-established and mature legacy networking paradigm requires a lot of time along with considerable financial resources and technical expertise. Consequently, many enterprises can not afford it. A compromise solution then is a hybrid networking environment (a.k.a. Hybrid SDN (hSDN)) in which SDN functionalities are leveraged while existing traditional network infrastructures are acknowledged. Recently, hSDN has been seen as a viable networking solution for a diverse range of businesses and organizations. Accordingly, the body of literature on hSDN research has improved remarkably. On this account, we present this paper as a comprehensive state-of-the-art survey which expands upon hSDN from many different perspectives

    QOS-Aware and Status-Aware Adaptive Resource Allocation Framework in SDN-Based IOT Middleware

    Get PDF
    «L’Internet des objets (IdO) est une infrastructure mondiale pour la société de l’information, qui permet de disposer de services évolués en interconnectant des objets (physiques ou virtuels) grâce aux technologies de l’information et de la communication interopérables existantes ou en évolution. »[1] La vision de l’Internet des Objets est d’étendre l’Internet dans nos vies quotidiennes afin d’améliorer la qualité de vie des personnes, de sorte que le nombre d’appareils connectés et d’applications innovantes augmente très rapidement pour amener l’intelligence dans différents secteurs comme la ville, le transport ou la santé. En 2020, les études affirment que les appareils connectés à Internet devraient compter entre 26 milliards et 50 milliards d’unités. [2, 3] La qualité de service d’application IoT dépend non seulement du réseau Internet et de l’infrastructure de communication, mais aussi du fonctionnement et des performances des appareils IoT. Par conséquent, les nouveaux paramètres de QoS tels que la précision des données et la disponibilité des appareils deviennent importants pour les applications IoT par rapport aux applications Internet. Le grand nombre de dispositifs et d’applications IoT connectés à Internet, et le flux de trafic spontané entre eux rendent la gestion de la qualité de service complexe à travers l’infrastructure Internet. D’un autre côté, les dispositifs non-IP et leurs capacités limitées en termes d’énergie et de transmission créent l’environnement dynamique et contraint. De plus, l’interconnexion de bout en bout entre les dispositifs et les applications n’est pas possible. Aussi, les applications sont intéressées par les données collectées, pas à la source spécifique qui les produit. Le Software Defined Networking (SDN) est un nouveau paradigme pour les réseaux informatiques apparu récemment pour cacher la complexité de l’architecture de réseau traditionnelle (par exemple de l’Internet) et briser la fermeture des systèmes de réseau dans les fonctions de contrôle et de données. Il permet aux propriétaires et aux administrateurs de réseau de contrôler et de gérer le comportement du réseau par programme, en découplant le plan de contrôle du plan de données. SDN a le potentiel de révolutionner les réseaux informatiques classiques existants, en offrant plusieurs avantages tels que la gestion centralisée, la programmabilité du réseau, l’efficacité des coûts d’exploitation, et les innovations. Dans cette thèse, nous étudions la gestion de ressources sur l’infrastructure IoT, y compris les réseaux de transport/Internet et de détection. Nous profitons de la technologie SDN comme le futur d’Internet pour offrir un système de support QoS flexible et adaptatif pour les services IoT. Nous présentons un intergiciel basé sur SDN pour définir un cadre de gestion de QoS pour gérer les besoins spécifiques de chaque application à travers l’infrastructure IoT. De plus, nous proposons un nouveau modèle QoS qui prend en compte les préférences de QoS des applications et l’état des éléments de réseau pour allouer efficacement les ressources sur le réseau transport/Internet basé sur SDN tout en maximisant les performances du réseau.----------ABSTRACT: The Internet of Things (IoT) is an integration of various kinds of technologies, wherein heterogeneous objects with capabilities of sensing, actuation, communication, computation, networking, and storage are rapidly developed to collect the data for the users and applications. The IoT vision is to extend the Internet into our everyday lives, so the number of connected devices and innovative applications are growing very fast to bring intelligence into as many domains as possible. The QoS for IoT application not only depends on the Internet network and communication infrastructure, it is also impacted by the operation and performance of IoT sensing infrastructure. Therefore, the new QoS parameters such as data accuracy, sampling rate, and device availability become important for the IoT applications compared to the Internet applications. The huge number of the Internet-connected IoT devices and application, and the spontaneous traffic flow among them make the management of the quality of service complex across the Internet infrastructure. On the other hand, the non-IP devices and their limited capabilities in terms of energy and transmission create the dynamic environment and hinder the direct interaction between devices and applications. The quality of service is becoming one of the critical non-functional IoT element which needs research and studies. A flexible and scalable QoS management mechanism must be implemented in IoT system to keep up with the growth rate of the Internet-connected IoT devices and applications as well as their heterogeneity and diversity. The solution should address the IoT application requirements and user satisfaction while considering the system dynamism, limitations, and characteristics. Software-Defined Networking (SDN) is an emerging paradigm in computer networking which separates the control plane and the data plane of the network elements. It makes the network elements programmable via the centralized control plane. This approach enables more agile management and control over the network behavior. In this thesis, we take advantage of SDN technology as the future of the Internet to offer a flexible and adaptive QoS support scheme for the IoT services. We present an SDN-based middleware to define a QoS management framework to manage the application specific QoS needs across the IoT infrastructure including transport and sensing network. Also, we propose a new QoS model that takes into account the application QoS preferences and the network elements status to allocate effectively the resources for the applications across SDN network while maximizing network performance

    Empowering the Internet of Vehicles with Multi-RAT 5G Network Slicing

    Get PDF
    Internet of Vehicles (IoV) is a hot research niche exploiting the synergy between Cooperative Intelligent Transportation Systems (C-ITS) and the Internet of Things (IoT), which can greatly benefit of the upcoming development of 5G technologies. The variety of end-devices, applications, and Radio Access Technologies (RATs) in IoV calls for new networking schemes that assure the Quality of Service (QoS) demanded by the users. To this end, network slicing techniques enable traffic differentiation with the aim of ensuring flow isolation, resource assignment, and network scalability. This work fills the gap of 5G network slicing for IoV and validates it in a realistic vehicular scenario. It offers an accurate bandwidth control with a full flow-isolation, which is essential for vehicular critical systems. The development is based on a distributed Multi-Access Edge Computing (MEC) architecture, which provides flexibility for the dynamic placement of the Virtualized Network Functions (VNFs) in charge of managing network traffic. The solution is able to integrate heterogeneous radio technologies such as cellular networks and specific IoT communications with potential in the vehicular sector, creating isolated network slices without risking the Core Network (CN) scalability. The validation results demonstrate the framework capabilities of short and predictable slice-creation time, performance/QoS assurance and service scalability of up to one million connected devices.EC/H2020/825496/EU/5G for cooperative & connected automated MOBIility on X-border corridors/5G-MOBI
    • …
    corecore