2,016 research outputs found

    A Study to Optimize Heterogeneous Resources for Open IoT

    Full text link
    Recently, IoT technologies have been progressed, and many sensors and actuators are connected to networks. Previously, IoT services were developed by vertical integration style. But now Open IoT concept has attracted attentions which achieves various IoT services by integrating horizontal separated devices and services. For Open IoT era, we have proposed the Tacit Computing technology to discover the devices with necessary data for users on demand and use them dynamically. We also implemented elemental technologies of Tacit Computing. In this paper, we propose three layers optimizations to reduce operation cost and improve performance of Tacit computing service, in order to make as a continuous service of discovered devices by Tacit Computing. In optimization process, appropriate function allocation or offloading specific functions are calculated on device, network and cloud layer before full-scale operation.Comment: 3 pages, 1 figure, 2017 Fifth International Symposium on Computing and Networking (CANDAR2017), Nov. 201

    Big Data Reference Architectures, a systematic literature review

    Get PDF
    Today, we live in a world that produces data at an unprecedented rate. The significant amount of data has raised lots of attention and many strive to harness the power of this new material. In the same direction, academics and practitioners have considered means through which they can incorporate datadriven functions and explore patterns that were otherwise unknown. This has led to a concept called Big Data. Big Data is a field that deals with data sets that are too large and complex for traditional approaches to handle. Technical matters are fundamentally critical, but what is even more necessary, is an architecture that supports the orchestration of Big Data systems; an image of the system providing with clear understanding of different elements and their interdependencies. Reference architectures aid in defining the body of system and its key components, relationships, behaviors, patterns and limitations. This study provides an in-depth review of Big Data Reference Architectures by applying a systematic literature review. The study demonstrates a synthesis of high-quality research to offer indications of new trends. The study contributes to the body of knowledge on the principles of Reference Architectures, the current state of Big Data Reference Architectures, and their limitations

    A proposal for the management of data driven services in smart manufacturing scenarios

    Get PDF
    205 p.This research work focuses on Industrial Big Data Services (IBDS) Providers, a specialization of ITServices Providers. IBDS Providers constitute a fundamental agent in Smart Manufacturing scenarios,given the wide spectrum of complex technological challenges involved in the adoption of the requireddata-related IT by manufacturers aiming at shifting their businesses towards Smart Manufacturing. Theoverarching goal of this research work is to provide contributions that (a) help the business sector ofIBDS Providers to manage their collaboration projects with manufacturing partners in order to deploy therequired data-driven services in Smart Manufacturing scenarios, and (b) adapt and extend existingconceptual, methodological, and technological proposals in order to include those practical elements thatfacilitate their use in business contexts. The main contributions of this dissertation focus on three specificchallenges related to the early stages of the data lifecycle, i.e. those stages that ensure the availability ofnew data to exploit, coming from monitored manufacturing facilities: (1) Devising a more efficient datastorage strategy that reduces the costs of the cloud infrastructure required by an IBDS Provider tocentralize and accumulate the massive-scale amounts of data from the supervised manufacturingfacilities; (2) Designing the required architecture for the data capturing and integration infrastructure thatsustains an IBDS Provider's platform; (3) The collaborative design process with partnering manufacturersof the required data-driven services for a specific manufacturing sector

    Towards a Technology-Driven Adaptive Decision Support System for Integrated Pavement and Maintenance strategies (TDADSS-IPM): focus on risk assessment framework for climate change adaptation

    Full text link
    Decision Support Systems for pavement and maintenance strategies have traditionally been designed as silos led to local optimum systems. Moreover, since big data usage didn't exist as result of Industry 4.0 as of today, DSSs were not initially designed adaptive to the sources of uncertainties led to rigid decisions. Motivated by the vulnerability of the road assets to the climate phenomena, this paper takes a visionary step towards introducing a Technology-Driven Adaptive Decision Support System for Integrated Pavement and Maintenance activities called TDADSS-IPM. As part of such DSS, a bottom-up risk assessment model is met via Bayesian Belief Networks (BBN) to realize the actual condition of the Danish roads due to weather condition. Such model fills the gaps in the knowledge domain and develops a platform that can be trained over time, and applied in real-time to the actual event

    Industrial internet of things platform for predictive maintenance

    Get PDF
    POCI-01-0247-FEDER-038436Industry 4.0, allied with the growth and democratization of Artificial Intelligence (AI) and the advent of IoT, is paving the way for the complete digitization and automation of industrial processes. Maintenance is one of these processes, where the introduction of a predictive approach, as opposed to the traditional techniques, is expected to considerably improve the industry maintenance strategies with gains such as reduced downtime, improved equipment effectiveness, lower maintenance costs, increased return on assets, risk mitigation, and, ultimately, profitable growth. With predictive maintenance, dedicated sensors monitor the critical points of assets. The sensor data then feed into machine learning algorithms that can infer the asset health status and inform operators and decision-makers. With this in mind, in this paper, we present TIP4.0, a platform for predictive maintenance based on a modular software solution for edge computing gateways. TIP4.0 is built around Yocto, which makes it readily available and compliant with Commercial Off-the-Shelf (COTS) or proprietary hardware. TIP4.0 was conceived with an industry mindset with communication interfaces that allow it to serve sensor networks in the shop floor and modular software architecture that allows it to be easily adjusted to new deployment scenarios. To showcase its potential, the TIP4.0 platform was validated over COTS hardware, and we considered a public data-set for the simulation of predictive maintenance scenarios. We used a Convolution Neural Network (CNN) architecture, which provided competitive performance over the state-of-the-art approaches, while being approximately four-times and two-times faster than the uncompressed model inference on the Central Processing Unit (CPU) and Graphical Processing Unit, respectively. These results highlight the capabilities of distributed large-scale edge computing over industrial scenarios.publishersversionpublishe

    Fog Computing

    Get PDF
    Everything that is not a computer, in the traditional sense, is being connected to the Internet. These devices are also referred to as the Internet of Things and they are pressuring the current network infrastructure. Not all devices are intensive data producers and part of them can be used beyond their original intent by sharing their computational resources. The combination of those two factors can be used either to perform insight over the data closer where is originated or extend into new services by making available computational resources, but not exclusively, at the edge of the network. Fog computing is a new computational paradigm that provides those devices a new form of cloud at a closer distance where IoT and other devices with connectivity capabilities can offload computation. In this dissertation, we have explored the fog computing paradigm, and also comparing with other paradigms, namely cloud, and edge computing. Then, we propose a novel architecture that can be used to form or be part of this new paradigm. The implementation was tested on two types of applications. The first application had the main objective of demonstrating the correctness of the implementation while the other application, had the goal of validating the characteristics of fog computing.Tudo o que não é um computador, no sentido tradicional, está sendo conectado à Internet. Esses dispositivos também são chamados de Internet das Coisas e estão pressionando a infraestrutura de rede atual. Nem todos os dispositivos são produtores intensivos de dados e parte deles pode ser usada além de sua intenção original, compartilhando seus recursos computacionais. A combinação desses dois fatores pode ser usada para realizar processamento dos dados mais próximos de onde são originados ou estender para a criação de novos serviços, disponibilizando recursos computacionais periféricos à rede. Fog computing é um novo paradigma computacional que fornece a esses dispositivos uma nova forma de nuvem a uma distância mais próxima, onde “Things” e outros dispositivos com recursos de conectividade possam delegar processamento. Nesta dissertação, exploramos fog computing e também comparamos com outros paradigmas, nomeadamente cloud e edge computing. Em seguida, propomos uma nova arquitetura que pode ser usada para formar ou fazer parte desse novo paradigma. A implementação foi testada em dois tipos de aplicativos. A primeira aplicação teve o objetivo principal de demonstrar a correção da implementação, enquanto a outra aplicação, teve como objetivo validar as características de fog computing
    corecore