3,662 research outputs found

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Bootstrapping Cognitive Radio Networks

    Get PDF
    Cognitive radio networks promise more efficient spectrum utilization by leveraging degrees of freedom and distributing data collection. The actual realization of these promises is challenged by distributed control, and incomplete, uncertain and possibly conflicting knowledge bases. We consider two problems in bootstrapping, evolving, and managing cognitive radio networks. The first is Link Rendezvous, or how separate radio nodes initially find each other in a spectrum band with many degrees of freedom, and little shared knowledge. The second is how radio nodes can negotiate for spectrum access with incomplete information. To address the first problem, we present our Frequency Parallel Blind Link Rendezvous algorithm. This approach, designed for recent generations of digital front-ends, implicitly shares vague information about spectrum occupancy early in the process, speeding the progress towards a solution. Furthermore, it operates in the frequency domain, facilitating a parallel channel rendezvous. Finally, it operates without a control channel and can rendezvous anywhere in the operating band. We present simulations and analysis on the false alarm rate for both a feature detector and a cross-correlation detector. We compare our results to the conventional frequency hopping sequence rendezvous techniques. To address the second problem, we model the network as a multi-agent system and negotiate by exchanging proposals, augmented with arguments. These arguments include information about priority status and the existence of other nodes. We show in a variety of network topologies that this process leads to solutions not otherwise apparent to individual nodes, and achieves superior network throughput, request satisfaction, and total number of connections, compared to our baselines. The agents independently formulate proposals based upon communication desires, evaluate these proposals based upon capacity constraints, create ariii guments in response to proposal rejections, and re-evaluate proposals based upon received arguments. We present our negotiation rules, messages, and protocol and demonstrate how they interoperate in a simulation environment

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    Recent Advances in Wireless Communications and Networks

    Get PDF
    This book focuses on the current hottest issues from the lowest layers to the upper layers of wireless communication networks and provides "real-time" research progress on these issues. The authors have made every effort to systematically organize the information on these topics to make it easily accessible to readers of any level. This book also maintains the balance between current research results and their theoretical support. In this book, a variety of novel techniques in wireless communications and networks are investigated. The authors attempt to present these topics in detail. Insightful and reader-friendly descriptions are presented to nourish readers of any level, from practicing and knowledgeable communication engineers to beginning or professional researchers. All interested readers can easily find noteworthy materials in much greater detail than in previous publications and in the references cited in these chapters

    CYCLOSTATIONARY FEATURES BASED LOW COMPLEXITY MUTLIRESOLUTION SPECTRUM SENSING FOR COGNITVE RADIO APPLICATIONS

    Get PDF
    The demand for variety of services using wireless communication has grown remarkably in the past few many years, consequently causing an acute problem of spectrum scarcity. Today, it is one of the most challenging problems in modern wireless communication. To overcome this, the concept of cognitive radio has been proposed and this technology is fast maturing. The first and foremost function a cognitive radio must do is to sense the spectrum as accurately as possible and do it with least complexity. Among many techniques of spectrum sensing, the Multi-resolution Spectrum Sensing (MRSS) is a popular technique in recent literature. Various multi resolution techniques are used that include wavelet based spectrum estimation and spectral hole detection, wavelet based multi-resolution in analog domain and multi-resolution multiple antenna based detection. However, the basic idea is the same - the total bandwidth is sensed using coarse resolution energy detection, then, fine sensing is applied to the portion of interest. None of these techniques, however, use multi-resolution sensing using cyclostationary features for cognitive radio applications which are more reliable but computationally expensive. In this thesis, we suggest a cyclostationary features based low complexity multi-resolution spectrum sensing for cognitive radio applications. The proposed technique discussed in this thesis is inspired by the quickness of multi-resolution and the reliability of cyclostationary feature detection. The performance of the proposed scheme is primarily evaluated by its complexity analysis and by determining the minimum signal-to-noise ratio that gives 90% probability of correct classification. Both subjective and objective evaluation show that the proposed scheme is not only superior to the commonly used energy detection method but also to various multi-resolution sensing techniques as it relies on the robustness of cyclostationary feature detection. The results found are encouraging and the proposed algorithms are proved to be not only fast but also more robust and reliable

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    COGNITIVE RADIO SOLUTION FOR IEEE 802.22

    Get PDF
    Current wireless systems suffer severe radio spectrum underutilization due to a number of problematic issues, including wasteful static spectrum allocations; fixed radio functionalities and architectures; and limited cooperation between network nodes. A significant number of research efforts aim to find alternative solutions to improve spectrum utilization. Cognitive radio based on software radio technology is one such novel approach, and the impending IEEE 802.22 air interface standard is the first based on such an approach. This standard aims to provide wireless services in wireless regional area network using TV spectrum white spaces. The cognitive radio devices employed feature two fundamental capabilities, namely supporting multiple modulations and data-rates based on wireless channel conditions and sensing a wireless spectrum. Spectrum sensing is a critical functionality with high computational complexity. Although the standard does not specify a spectrum sensing method, the sensing operation has inherent timing and accuracy constraints.This work proposes a framework for developing a cognitive radio system based on a small form factor software radio platform with limited memory resources and processing capabilities. The cognitive radio systems feature adaptive behavior based on wireless channel conditions and are compliant with the IEEE 802.22 sensing constraints. The resource limitations on implementation platforms post a variety of challenges to transceiver configurability and spectrum sensing. Overcoming these fundamental features on small form factors paves the way for portable cognitive radio devices and extends the range of cognitive radio applications.Several techniques are proposed to overcome resource limitation on a small form factor software radio platform based on a hybrid processing architecture comprised of a digital signal processor and a field programmable gate array. Hardware reuse and task partitioning over a number of processing devices are among the techniques used to realize a configurable radio transceiver that supports several communication modes, including modulations and data rates. In particular, these techniques are applied to build configurable modulation architecture and a configurable synchronization. A mode-switching architecture based on circular buffers is proposed to facilitate a reliable transitioning between different communication modes.The feasibility of efficient spectrum sensing based on a compressive sampling technique called "Fast Fourier Sampling" is examined. The configuration parameters are analyzed mathematically, and performance is evaluated using computer simulations for local spectrum sensing applications. The work proposed herein features a cooperative Fast Fourier sampling scheme to extend the narrowband and wideband sensing performance of this compressive sensing technique.The précis of this dissertation establishes the foundation of efficient cognitive radio implementation on small form factor software radio of hybrid processing architecture

    Design and Development of a Testbed Prototype for Cognitive Radio Transmission over TV White Space

    Get PDF
    Considering the ever-increasing demand and the associated high costs of wireless electromagnetic spectrum, technologies that can facilitate efficient spectrum utilization are of utmost importance. Cognitive radio (CR), in conjunction with TV White Spaces (TVWS), can be a viable solution, where unlicensed or secondary users can opportunistically use the not-currently-in-use, aka idle, TV channels registered to licensed or primary users. This thesis focuses on the design and development of a testbed prototype for real-time testing of secondary user transmission in TVWS. Once an unused TV channel has been identified, our system uses that idle channel for transmitting and receiving signals. The testbed is built on Universal Software Radio Peripheral (USRP) device powered by GNU Radio Software, Software Defined Radio (SDR) receptor, and Spectrum Analyser. The developed prototype splits a given TVWS channel into multiple small sub-channels and performs channel characterization through end-to-end transmission and reception of information carrying signals. The channel characteristics are presented through Bit Transfer Rate (BTR) and frequency spectrum results. The prototype also facilitates provisions for applying error correction coding as a mean of undertaking comparative performance testing
    corecore