18 research outputs found

    Enhancement of bees algorithm for global optimisation

    Get PDF
    This research focuses on the improvement of the Bees Algorithm, a swarm-based nature-inspired optimisation algorithm that mimics the foraging behaviour of honeybees. The algorithm consists of exploitation and exploration, the two key elements of optimisation techniques that help to find the global optimum in optimisation problems. This thesis presents three new approaches to the Bees Algorithm in a pursuit to improve its convergence speed and accuracy. The first proposed algorithm focuses on intensifying the local search area by incorporating Hooke and Jeeves’ method in its exploitation mechanism. This direct search method contains a pattern move that works well in the new variant named “Bees Algorithm with Hooke and Jeeves” (BA-HJ). The second proposed algorithm replaces the randomly generated recruited bees deployment method with chaotic sequences using a well-known logistic map. This new variant called “Bees Algorithm with Chaos” (ChaosBA) was intended to use the characteristic of chaotic sequences to escape from local optima and at the same time maintain the diversity of the population. The third improvement uses the information of the current best solutions to create new candidate solutions probabilistically using the Estimation Distribution Algorithm (EDA) approach. This new version is called Bees Algorithm with Estimation Distribution (BAED). Simulation results show that these proposed algorithms perform better than the standard BA, SPSO2011 and qABC in terms of convergence for the majority of the tested benchmark functions. The BA-HJ outperformed the standard BA in thirteen out of fifteen benchmark functions and is more effective in eleven out of fifteen benchmark functions when compared to SPSO2011 and qABC. In the case of the ChaosBA, the algorithm outperformed the standard BA in twelve out of fifteen benchmark functions and significantly better in eleven out of fifteen test functions compared to qABC and SPSO2011. BAED discovered the optimal solution with the least number of evaluations in fourteen out of fifteen cases compared to the standard BA, and eleven out of fifteen functions compared to SPSO2011 and qABC. Furthermore, the results on a set of constrained mechanical design problems also show that the performance of the proposed algorithms is comparable to those of the standard BA and other swarm-based algorithms from the literature

    Adaptive bio-inspired firefly and invasive weed algorithms for global optimisation with application to engineering problems

    Get PDF
    The focus of the research is to investigate and develop enhanced version of swarm intelligence firefly algorithm and ecology-based invasive weed algorithm to solve global optimisation problems and apply to practical engineering problems. The work presents two adaptive variants of firefly algorithm by introducing spread factor mechanism that exploits the fitness intensity during the search process. The spread factor mechanism is proposed to enhance the adaptive parameter terms of the firefly algorithm. The adaptive algorithms are formulated to avoid premature convergence and better optimum solution value. Two new adaptive variants of invasive weed algorithm are also developed seed spread factor mechanism introduced in the dispersal process of the algorithm. The working principles and structure of the adaptive firefly and invasive weed algorithms are described and discussed. Hybrid invasive weed-firefly algorithm and hybrid invasive weed-firefly algorithm with spread factor mechanism are also proposed. The new hybridization algorithms are developed by retaining their individual advantages to help overcome the shortcomings of the original algorithms. The performances of the proposed algorithms are investigated and assessed in single-objective, constrained and multi-objective optimisation problems. Well known benchmark functions as well as current CEC 2006 and CEC 2014 test functions are used in this research. A selection of performance measurement tools is also used to evaluate performances of the algorithms. The algorithms are further tested with practical engineering design problems and in modelling and control of dynamic systems. The systems considered comprise a twin rotor system, a single-link flexible manipulator system and assistive exoskeletons for upper and lower extremities. The performance results are evaluated in comparison to the original firefly and invasive weed algorithms. It is demonstrated that the proposed approaches are superior over the individual algorithms in terms of efficiency, convergence speed and quality of the optimal solution achieved

    Improvements on the bees algorithm for continuous optimisation problems

    Get PDF
    This work focuses on the improvements of the Bees Algorithm in order to enhance the algorithm’s performance especially in terms of convergence rate. For the first enhancement, a pseudo-gradient Bees Algorithm (PG-BA) compares the fitness as well as the position of previous and current bees so that the best bees in each patch are appropriately guided towards a better search direction after each consecutive cycle. This method eliminates the need to differentiate the objective function which is unlike the typical gradient search method. The improved algorithm is subjected to several numerical benchmark test functions as well as the training of neural network. The results from the experiments are then compared to the standard variant of the Bees Algorithm and other swarm intelligence procedures. The data analysis generally confirmed that the PG-BA is effective at speeding up the convergence time to optimum. Next, an approach to avoid the formation of overlapping patches is proposed. The Patch Overlap Avoidance Bees Algorithm (POA-BA) is designed to avoid redundancy in search area especially if the site is deemed unprofitable. This method is quite similar to Tabu Search (TS) with the POA-BA forbids the exact exploitation of previously visited solutions along with their corresponding neighbourhood. Patches are not allowed to intersect not just in the next generation but also in the current cycle. This reduces the number of patches materialise in the same peak (maximisation) or valley (minimisation) which ensures a thorough search of the problem landscape as bees are distributed around the scaled down area. The same benchmark problems as PG-BA were applied against this modified strategy to a reasonable success. Finally, the Bees Algorithm is revised to have the capability of locating all of the global optimum as well as the substantial local peaks in a single run. These multi-solutions of comparable fitness offers some alternatives for the decision makers to choose from. The patches are formed only if the bees are the fittest from different peaks by using a hill-valley mechanism in this so called Extended Bees Algorithm (EBA). This permits the maintenance of diversified solutions throughout the search process in addition to minimising the chances of getting trap. This version is proven beneficial when tested with numerous multimodal optimisation problems

    Improved Spiral Dynamics and Artificial Bee Colony Algorithms with Application to Engineering Problems

    Get PDF

    Adaptive and learning-based formation control of swarm robots

    Get PDF
    Autonomous aerial and wheeled mobile robots play a major role in tasks such as search and rescue, transportation, monitoring, and inspection. However, these operations are faced with a few open challenges including robust autonomy, and adaptive coordination based on the environment and operating conditions, particularly in swarm robots with limited communication and perception capabilities. Furthermore, the computational complexity increases exponentially with the number of robots in the swarm. This thesis examines two different aspects of the formation control problem. On the one hand, we investigate how formation could be performed by swarm robots with limited communication and perception (e.g., Crazyflie nano quadrotor). On the other hand, we explore human-swarm interaction (HSI) and different shared-control mechanisms between human and swarm robots (e.g., BristleBot) for artistic creation. In particular, we combine bio-inspired (i.e., flocking, foraging) techniques with learning-based control strategies (using artificial neural networks) for adaptive control of multi- robots. We first review how learning-based control and networked dynamical systems can be used to assign distributed and decentralized policies to individual robots such that the desired formation emerges from their collective behavior. We proceed by presenting a novel flocking control for UAV swarm using deep reinforcement learning. We formulate the flocking formation problem as a partially observable Markov decision process (POMDP), and consider a leader-follower configuration, where consensus among all UAVs is used to train a shared control policy, and each UAV performs actions based on the local information it collects. In addition, to avoid collision among UAVs and guarantee flocking and navigation, a reward function is added with the global flocking maintenance, mutual reward, and a collision penalty. We adapt deep deterministic policy gradient (DDPG) with centralized training and decentralized execution to obtain the flocking control policy using actor-critic networks and a global state space matrix. In the context of swarm robotics in arts, we investigate how the formation paradigm can serve as an interaction modality for artists to aesthetically utilize swarms. In particular, we explore particle swarm optimization (PSO) and random walk to control the communication between a team of robots with swarming behavior for musical creation

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Modelling and Optimization of Wave Energy Converters

    Get PDF
    Wave energy offers a promising renewable energy source. This guide presents numerical modelling and optimisation methods for the development of wave energy converter technologies, from principles to applications. It covers oscillating water column technologies, theoretical wave power absorption, heaving point absorbers in single and multi-mode degrees of freedom, and the relatively hitherto unexplored topic of wave energy harvesting farms. It can be used as a specialist student textbook as well as a reference book for the design of wave energy harvesting systems, across a broad range of disciplines, including renewable energy, marine engineering, infrastructure engineering, hydrodynamics, ocean science, and mechatronics engineering. The Open Access version of this book, available at https://www.routledge.com/ has been made available under a Creative Commons Attribution-Non Commercial-No Derivatives 4.0 license

    1. Helgoland Power and Energy Conference - 24. Dresdener Kreis 2023

    Get PDF
    Der Sammelband "1. Helgoland Power and Energy Conference" beinhaltet neben einem kurzen Bericht zum 24. Treffen des Dresdener Kreises 2023 wissenschaftliche Beiträge von Doktoranden der beteiligten Hochschulinstitute zum Thema Elektroenergieversorgung. Der Dresdener Kreis setzt sich aus der Professur für Elektroenergieversorgung der Technischen Universität Dresden, dem Fachgebiet Elektrische Anlagen und Netze der Universität Duisburg-Essen, dem Fachgebiet Elektrische Energieversorgung der Leibniz Universität Hannover und dem Lehrstuhl Elektrische Netze und Erneuerbare Energie der Otto-von-Guericke Universität Magdeburg zusammen und trifft sich einmal im Jahr zum fachlichen Austausch an einer der beteiligten Universitäten

    Boundary tracking and source seeking of oceanic features using autonomous vehicles

    Get PDF
    The thesis concerns the study and the development of boundary tracking and source seeking approaches for autonomous vehicles, specifically for marine autonomous systems. The underlying idea is that the characterization of most environmental features can be posed from either a boundary tracking or a source seeking perspective. The suboptimal sliding mode boundary tracking approach is considered and, as a first contribution, it is extended to the study of three dimensional features. The approach is aimed at controlling the movement of an underwater glider tracking a three-dimensional underwater feature and it is validated in a simulated environment. Subsequently, a source seeking approach based on sliding mode extremum seeking ideas is proposed. This approach is developed for the application to a single surface autonomous vehicle, seeking the source of a static or dynamic two dimensional spatial field. A sufficient condition which guarantees the finite time convergence to a neighbourhood of the source is introduced. Furthermore, a probabilistic learning boundary tracking approach is proposed, aimed at exploiting the available preliminary information relating to the spatial phenomenon of interest in the control strategy. As an additional contribution, the sliding mode boundary tracking approach is experimentally validated in a set of sea-trials with the deployment of a surface autonomous vehicle. Finally, an embedded system implementing the proposed boundary tracking strategy is developed for future installation on board of the autonomous vehicle. This work demonstrates the possibility to perform boundary tracking with a fully autonomous vehicle and to operate marine autonomous systems without remote control or pre-planning. Conclusions are drawn from the results of the research presented in this thesis and directions for future work are identified
    corecore