581 research outputs found

    Observer based active fault tolerant control of descriptor systems

    Get PDF
    The active fault tolerant control (AFTC) uses the information provided by fault detection and fault diagnosis (FDD) or fault estimation (FE) systems offering an opportunity to improve the safety, reliability and survivability for complex modern systems. However, in the majority of the literature the roles of FDD/FE and reconfigurable control are described as separate design issues often using a standard state space (i.e. non-descriptor) system model approach. These separate FDD/FE and reconfigurable control designs may not achieve desired stability and robustness performance when combined within a closed-loop system.This work describes a new approach to the integration of FE and fault compensation as a form of AFTC within the context of a descriptor system rather than standard state space system. The proposed descriptor system approach has an integrated controller and observer design strategy offering better design flexibility compared with the equivalent approach using a standard state space system. An extended state observer (ESO) is developed to achieve state and fault estimation based on a joint linear matrix inequality (LMI) approach to pole-placement and H∞ optimization to minimize the effects of bounded exogenous disturbance and modelling uncertainty. A novel proportional derivative (PD)-ESO is introduced to achieve enhanced estimation performance, making use of the additional derivative gain. The proposed approaches are evaluated using a common numerical example adapted from the recent literature and the simulation results demonstrate clearly the feasibility and power of the integrated estimation and control AFTC strategy. The proposed AFTC design strategy is extended to an LPV descriptor system framework as a way of dealing with the robustness and stability of the system with bounded parameter variations arising from the non-linear system, where a numerical example demonstrates the feasibility of the use of the PD-ESO for FE and compensation integrated within the AFTC system.A non-linear offshore wind turbine benchmark system is studied as an application of the proposed design strategy. The proposed AFTC scheme uses the existing industry standard wind turbine generator angular speed reference control system as a “baseline” control within the AFTC scheme. The simulation results demonstrate the added value of the new AFTC system in terms of good fault tolerance properties, compared with the existing baseline system

    Approaches based on LAMDA control applied to regulate HVAC systems for buildings

    Get PDF
    The control of HVAC (Heating Ventilation and Air Conditioning) systems is usually complex because its modeling in certain cases is difficult, since these systems have a large number of components. Heat exchangers, chillers, valves, sensors, and actuators, increase the non-linear characteristics of the complete model, so it is necessary to propose new control strategies that can handle the uncertainty generated by all these elements working together. On the other hand, artificial intelligence is a powerful tool that allows improving the performance of control systems with inexact models and uncertainties. This paper presents new control alternatives for HVAC systems based on LAMDA (Learning Algorithm for Multivariable Data Analysis). This algorithm has been used in the field of machine learning, however, we have taken advantage of its learning characteristics to propose different types of intelligent controllers to improve the performance of the overall control system in tasks of regulation and reference change. In order to perform a comparative analysis in the context of HVAC systems, conventional methods such as PID and Fuzzy-PID are compared with LAMDA-PID, LAMDA-Sliding Mode Control based on Z-numbers (ZLSMC), and Adaptive LAMDA. Specifically, two HVAC systems are implemented by simulations to evaluate the proposals: an MIMO (Multiple-input Multiple-output) HVAC system and an HVAC system with dead time, which are used to compare the results qualitatively and quantitatively. The results show that ZLSMC is the most robust controller, which efficiently controls HVAC systems in cases of reference changes and the presence of disturbances.European CommissionAgencia Estatal de InvestigaciĂłnJunta de Comunidades de Castilla-La Manch

    Elastic-PPQ: A two-level autonomic system for spatial preference query processing over dynamic data streams

    Get PDF
    Paradigms like Internet of Things and the most recent Internet of Everything are shifting the attention towards systems able to process unbounded sequences of items in the form of data streams. In the real world, data streams may be highly variable, exhibiting burstiness in the arrival rate and non-stationarities such as trends and cyclic behaviors. Furthermore, input items may be not ordered according to timestamps. This raises the complexity of stream processing systems, which must support elastic resource management and autonomic QoS control through sophisticated strategies and run-time mechanisms. In this paper we present Elastic-PPQ, a system for processing spatial preference queries over dynamic data streams. The key aspect of the system design is the existence of two adaptation levels handling workload variations at different time-scales. To address fast time-scale variations we design a fine regulatory mechanism of load balancing supported by a control-theoretic approach. The logic of the second adaptation level, targeting slower time-scale variations, is incorporated in a Fuzzy Logic Controller that makes scale in/out decisions of the system parallelism degree. The approach has been successfully evaluated under synthetic and real-world datasets

    Studies on SI engine simulation and air/fuel ratio control systems design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.More stringent Euro 6 and LEV III emission standards will immediately begin execution on 2014 and 2015 respectively. Accurate air/fuel ratio control can effectively reduce vehicle emission. The simulation of engine dynamic system is a very powerful method for developing and analysing engine and engine controller. Currently, most engine air/fuel ratio control used look-up table combined with proportional and integral (PI) control and this is not robust to system uncertainty and time varying effects. This thesis first develops a simulation package for a port injection spark-ignition engine and this package include engine dynamics, vehicle dynamics as well as driving cycle selection module. The simulations results are very close to the data obtained from laboratory experiments. New controllers have been proposed to control air/fuel ratio in spark ignition engines to maximize the fuel economy while minimizing exhaust emissions. The PID control and fuzzy control methods have been combined into a fuzzy PID control and the effectiveness of this new controller has been demonstrated by simulation tests. A new neural network based predictive control is then designed for further performance improvements. It is based on the combination of inverse control and predictive control methods. The network is trained offline in which the control output is modified to compensate control errors. The simulation evaluations have shown that the new neural controller can greatly improve control air/fuel ratio performance. The test also revealed that the improved AFR control performance can effectively restrict engine harmful emissions into atmosphere, these reduce emissions are important to satisfy more stringent emission standards

    Human-robot interaction using a behavioural control strategy

    Get PDF
    PhD ThesisA topical and important aspect of robotics research is in the area of human-robot interaction (HRI), which addresses the issue of cooperation between a human and a robot to allow tasks to be shared in a safe and reliable manner. This thesis focuses on the design and development of an appropriate set of behaviour strategies for human-robot interactive control by first understanding how an equivalent human-human interaction (HHI) can be used to establish a framework for a robotic behaviour-based approach. To achieve the above goal, two preliminary HHI experimental investigations were initiated in this study. The first of which was designed to evaluate the human dynamic response using a one degree-of-freedom (DOF) HHI rectilinear test where the handler passes a compliant object to the receiver along a constrained horizontal path. The human dynamic response while executing the HHI rectilinear task has been investigated using a Box-Behnken design of experiments [Box and Hunter, 1957] and was based on the McRuer crossover model [McRuer et al. 1995]. To mimic a real-world human-human object handover task where the handler is able to pass an object to the receiver in a 3D workspace, a second more substantive one DOF HHI baton handover task has been developed. The HHI object handover tests were designed to understand the dynamic behavioural characteristics of the human participants, in which the handler was required to dexterously pass an object to the receiver in a timely and natural manner. The profiles of interactive forces between the handler and receiver were measured as a function of time, and how they are modulated whilst performing the tasks, was evaluated. Three key parameters were used to identify the physical characteristics of the human participants, including: peak interactive force (fmax), transfer time (Ttrf), and work done (W). These variables were subsequently used to design and develop an appropriate set of force and velocity control strategies for a six DOF StÀubli robot manipulator arm (TX60) working in a human-robot interactive environment. The optimal design of the software and hardware controller implementation for the robot system has been successfully established in keeping with a behaviour-based approach. External force control based on proportional plus integral (PI) and fuzzy logic control (FLC) algorithms were adopted to control the robot end effector velocity and interactive force in real-time. ii The results of interactive experiments with human-to-robot and robot-to-human handover tasks allowed a comparison of the PI and FLC control strategies. It can be concluded that the quantitative measurement of the performance of robot velocity and force control can be considered acceptable for human-robot interaction. These can provide effective performance during the robot-human object handover tasks, where the robot was able to successfully pass the object from/to the human in a safe, reliable and timely manner. However, after careful analysis with regard to human-robot handover test results, the FLC scheme was shown to be superior to PI control by actively compensating for the dynamics in the non-linear system and demonstrated better overall performance and stability. The FLC also shows superior performance in terms of improved sensitivity to small error changes compared to PI control, which is an advantage in establishing effective robot force control. The results of survey responses from the participants were in agreement with the parallel test outcomes, demonstrating significant satisfaction with the overall performance of the human-robot interactive system, as measured by an average rating of 4.06 on a five point scale. In brief, this research has contributed the foundations for long-term research, particularly in the development of an interactive real-time robot-force control system, which enables the robot manipulator arm to cooperate with a human to facilitate the dextrous transfer of objects in a safe and speedy manner.Thai government and Prince of Songkla University (PSU
    • 

    corecore