465 research outputs found

    Fairness Evaluation in Cooperative Hybrid Cellular Systems

    Get PDF
    Many method has been applied previously to improve the fairness of a wireless communication system. In this paper, we propose using hybrid schemes, where more than one transmission scheme are used in one system, to achieve this objective. These schemes consist of cooperative transmission schemes, maximal ratio transmission and interference alignment, and non-cooperative schemes, orthogonal and non-orthogonal schemes used alongside and in combinations in the same system to improve the fairness. We provide different weight calculation methods to vary the output of the fairness problem. We show the solution of the radio resource allocation problem for the transmission schemes used. Finally, simulation results is provided to show fairness achieved, in terms of Jain's fairness index, by applying the hybrid schemes proposed and the different weight calculation methods at different inter-site distances

    Practical Resource Allocation Algorithms for QoS in OFDMA-based Wireless Systems

    Full text link
    In this work we propose an efficient resource allocation algorithm for OFDMA based wireless systems supporting heterogeneous traffic. The proposed algorithm provides proportionally fairness to data users and short term rate guarantees to real-time users. Based on the QoS requirements, buffer occupancy and channel conditions, we propose a scheme for rate requirement determination for delay constrained sessions. Then we formulate and solve the proportional fair rate allocation problem subject to those rate requirements and power/bandwidth constraints. Simulations results show that the proposed algorithm provides significant improvement with respect to the benchmark algorithm.Comment: To be presented at 2nd IEEE International Broadband Wireless Access Workshop. Las Vegas, Nevada USA Jan 12 200

    MLTE Algorithm for Multicast Service Delivery in OFDMA Networks

    Get PDF
    Dispensing and overseeing radio resources to the multi-cast transmissions in OFDMA (orthogonal-frequency division-multiple-access) systems is testing exploration issue tended to by this paper. A sub-grouping technique, which separates the subscribers into subgroups as indicated by the accomplished channel quality, is considered to defeat the throughput confinements of conventional multicast data conveyance schemes. A low complexity algorithm intended to work with diverse resource allocation strategies, is additionally proposed to diminish the computational complexity of the subgroup development issue. Reproduction results, did by considering the long term evolution system taking into account OFDMA, affirm the adequacy of the proposed arrangement, which accomplishes a close ideal execution with a restricted computational load for the system. In this paper we are introducing the MLTE for improve the MBPS speed for fix network coverage at uniform and sparse. DOI: 10.17762/ijritcc2321-8169.150713

    Resource allocation technique for powerline network using a modified shuffled frog-leaping algorithm

    Get PDF
    Resource allocation (RA) techniques should be made efficient and optimized in order to enhance the QoS (power & bit, capacity, scalability) of high-speed networking data applications. This research attempts to further increase the efficiency towards near-optimal performance. RA’s problem involves assignment of subcarriers, power and bit amounts for each user efficiently. Several studies conducted by the Federal Communication Commission have proven that conventional RA approaches are becoming insufficient for rapid demand in networking resulted in spectrum underutilization, low capacity and convergence, also low performance of bit error rate, delay of channel feedback, weak scalability as well as computational complexity make real-time solutions intractable. Mainly due to sophisticated, restrictive constraints, multi-objectives, unfairness, channel noise, also unrealistic when assume perfect channel state is available. The main goal of this work is to develop a conceptual framework and mathematical model for resource allocation using Shuffled Frog-Leap Algorithm (SFLA). Thus, a modified SFLA is introduced and integrated in Orthogonal Frequency Division Multiplexing (OFDM) system. Then SFLA generated random population of solutions (power, bit), the fitness of each solution is calculated and improved for each subcarrier and user. The solution is numerically validated and verified by simulation-based powerline channel. The system performance was compared to similar research works in terms of the system’s capacity, scalability, allocated rate/power, and convergence. The resources allocated are constantly optimized and the capacity obtained is constantly higher as compared to Root-finding, Linear, and Hybrid evolutionary algorithms. The proposed algorithm managed to offer fastest convergence given that the number of iterations required to get to the 0.001% error of the global optimum is 75 compared to 92 in the conventional techniques. Finally, joint allocation models for selection of optima resource values are introduced; adaptive power and bit allocators in OFDM system-based Powerline and using modified SFLA-based TLBO and PSO are propose

    Priority-Based Resource Allocation for Downlink OFDMA Systems Supporting RT and NRT Traffics

    Get PDF
    Efficient radio resource management is essential in Quality-of-Service (QoS) provisioning for wireless communication networks. In this paper, we propose a novel priority-based packet scheduling algorithm for downlink OFDMA systems. The proposed algorithm is designed to support heterogeneous applications consisting of both real-time (RT) and non-real-time (NRT) traffics with the objective to increase the spectrum efficiency while satisfying diverse QoS requirements. It tightly couples the subchannel allocation and packet scheduling together through an integrated cross-layer approach in which each packet is assigned a priority value based on both the instantaneous channel conditions as well as the QoS constraints. An efficient suboptimal heuristic algorithm is proposed to reduce the computational complexity with marginal performance degradation compared to the optimal solution. Simulation results show that the proposed algorithm can significantly improve the system performance in terms of high spectral efficiency and low outage probability compared to conventional packet scheduling algorithms, thus is very suitable for the downlink of current OFDMA systems

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF
    • …
    corecore