169 research outputs found

    Ant-based evidence distribution with periodic broadcast in attacked wireless network

    Get PDF
    In order to establish trust among nodes in large wireless networks, the trust certicates need to be distributed and be readily accessible. However, even so, searching for trust certicates will still become highly cost and delay especially when wireless network is suering CTS jamming attack. We believe the individual solution can lead us to solve this combination problems in the future. Therefore, in this work, we investigate the delay and cost of searching a distributed certicate and the adverse eects of fabiricated control packet attacks on channel throughput and delivery ratio respectively, and propose two techniques that can improve the eciency of searching for such certicates in the network and mitigate the CTS jamming attack's eect. Evidence Distribution based on Periodic Broadcast (EDPB) is the rst solution we presented to help node to quickly locate trust certicates in a large wireless sensor network. In this solution, we not only take advantages from swarm intelligence alogrithm, but also allow nodes that carrying certicates to periodically announce their existence. Such announcements, together with a swarm-intelligence pheromone pdate procedure, will leave traces on the nodes to lead query packets toward the certicate nodes. We then investigate the salient features of this schema and evaluate its performance in both static and mobile networks. This schema can also be used for other essential information dissemination in mobile ad hoc networks. The second technqiue, address inspection schema (AIS) xes vulnerabilities exist in distribution coordinating function (DCF) dened in IEEE 802.11 standard so that each node has the ability to beat the impact of CTS jamming attack and furthermore, benets network throughput. We then perform ns-2 simulations to evaluate the benet of AIS

    Mobility Helps Peer-to-Peer Security

    Get PDF
    We propose a straightforward technique to provide peer-to-peer security in mobile networks. We show that far from being a hurdle, mobility can be exploited to set up security associations among users. We leverage on the temporary vicinity of users, during which appropriate cryptographic protocols are run. We illustrate the operation of the solution in two scenarios, both in the framework of mobile ad hoc networks. In the first scenario, we consider fully self-organized security: users authenticate each other by visual contact and by the activation of an appropriate secure side channel of their personal device; we show that the process can be fuelled by taking advantage of trusted acquaintances In the second scenario, we assume the presence of an off-line certification authority and we show how mobility helps to solve the security-routing interdependency cycle; in this case, the security protocol runs over one-hop radio links. We then show that the proposed solution is generic: it can be deployed on any mobile network and it can be implemented either with symmetric or with asymmetric cryptography. We provide a detailed performance analysis by studying the behavior of the solution on various mobility models

    Protection of mobile and wireless networks against service availability attacks

    Get PDF
    Cellular and wireless communications are widely used as preferred technology for accessing network services due to their flexibility and cost-effective deployment. 4G (4th Generation) networks have been gradually substituting legacy systems, relying on the existing commercial and private Wireless Local Area Network (WLAN) infrastructures, mainly based on the IEEE 802.11 standard, to provide mobile data offloading and reduce congestion on the valuable limited spectrum. Such predominant position on the market makes cellular and wireless communications a profitable target for malicious users and hackers, justifying the constant effort on protecting them from existing and future security threats. [Continues.

    Hierarchical Deep Reinforcement Learning for Age-of-Information Minimization in IRS-aided and Wireless-powered Wireless Networks

    Full text link
    In this paper, we focus on a wireless-powered sensor network coordinated by a multi-antenna access point (AP). Each node can generate sensing information and report the latest information to the AP using the energy harvested from the AP's signal beamforming. We aim to minimize the average age-of-information (AoI) by adapting the nodes' transmission scheduling and the transmission control strategies jointly. To reduce the transmission delay, an intelligent reflecting surface (IRS) is used to enhance the channel conditions by controlling the AP's beamforming vector and the IRS's phase shifting matrix. Considering dynamic data arrivals at different sensing nodes, we propose a hierarchical deep reinforcement learning (DRL) framework to for AoI minimization in two steps. The users' transmission scheduling is firstly determined by the outer-loop DRL approach, e.g. the DQN or PPO algorithm, and then the inner-loop optimization is used to adapt either the uplink information transmission or downlink energy transfer to all nodes. A simple and efficient approximation is also proposed to reduce the inner-loop rum time overhead. Numerical results verify that the hierarchical learning framework outperforms typical baselines in terms of the average AoI and proportional fairness among different nodes.Comment: 31 pages, 6 figures, 2 tables, 3 algorithm

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Security performance and protocol consideration in optical communication system with optical layer security enabled by optical coding techniques

    Get PDF
    With the fast development of communication systems, network security issues have more and more impact on daily life. It is essential to construct a high degree of optical layer security to resolve the security problem once and for all. Three different techniques which can provide optical layer security are introduced and compared. Optical chaos can be used for fast random number generation. Quantum cryptography is the most promising technique for key distribution. And the optical coding techniques can be deployed to encrypt the modulated signal in the optical layer. A mathematical equation has been derived from information theory to evaluate the information-theoretic security level of the wiretap channel in optical coding schemes. And the merits and limitation of two coherent optical coding schemes, temporal phase coding and spectral phase coding, have been analysed. The security scheme based on a reconfigurable optical coding device has been introduced, and the corresponding security protocol has been developed. By moving the encryption operation from the electronic layer to the optical layer, the modulated signals become opaque to the unauthorised users. Optical code distribution and authentication is the one of the major challenges for our proposed scheme. In our proposed protocol, both of the operations are covered and defined in detail. As a preliminary draft of the optical code security protocol, it could be a useful guidance for further research

    Optimization and Communication in UAV Networks

    Get PDF
    UAVs are becoming a reality and attract increasing attention. They can be remotely controlled or completely autonomous and be used alone or as a fleet and in a large set of applications. They are constrained by hardware since they cannot be too heavy and rely on batteries. Their use still raises a large set of exciting new challenges in terms of trajectory optimization and positioning when they are used alone or in cooperation, and communication when they evolve in swarm, to name but a few examples. This book presents some new original contributions regarding UAV or UAV swarm optimization and communication aspects

    Cognitive Communications in White Space: Opportunistic Scheduling, Spectrum Shaping and Delay Analysis

    Get PDF
    abstract: A unique feature, yet a challenge, in cognitive radio (CR) networks is the user hierarchy: secondary users (SU) wishing for data transmission must defer in the presence of active primary users (PUs), whose priority to channel access is strictly higher.Under a common thread of characterizing and improving Quality of Service (QoS) for the SUs, this dissertation is progressively organized under two main thrusts: the first thrust focuses on SU's throughput by exploiting the underlying properties of the PU spectrum to perform effective scheduling algorithms; and the second thrust aims at another important QoS performance of the SUs, namely delay, subject to the impact of PUs' activities, and proposes enhancement and control mechanisms. More specifically, in the first thrust, opportunistic spectrum scheduling for SU is first considered by jointly exploiting the memory in PU's occupancy and channel fading. In particular, the underexplored scenario where PU occupancy presents a {long} temporal memory is taken into consideration. By casting the problem as a partially observable Markov decision process, a set of {multi-tier} tradeoffs are quantified and illustrated. Next, a spectrum shaping framework is proposed by leveraging network coding as a {spectrum shaper} on the PU's traffic. Such shaping effect brings in predictability of the primary spectrum, which is utilized by the SUs to carry out adaptive channel sensing by prioritizing channel access order, and hence significantly improve their throughput. On the other hand, such predictability can make wireless channels more susceptible to jamming attacks. As a result, caution must be taken in designing wireless systems to balance the throughput and the jamming-resistant capability. The second thrust turns attention to an equally important performance metric, i.e., delay performance. Specifically, queueing delay analysis is conducted for SUs employing random access over the PU channels. Fluid approximation is taken and Poisson driven stochastic differential equations are applied to characterize the moments of the SUs' steady-state queueing delay. Then, dynamic packet generation control mechanisms are developed to meet the given delay requirements for SUs.Dissertation/ThesisPh.D. Electrical Engineering 201

    An innovative approach of blending security features in energy-efficient routing for a crowded network of wireless sensors

    Get PDF
    Wireless sensor networks (WSN) are emerging as both an important new tier in the IT (information technology) ecosystem and a rich domain of active research involving hardware and system design, networking, distributed algorithms, programming models, data management, security, and social factors [1,2]. The basic idea of a sensor network is to disperse tiny sensing devices over a specific target area. These devices are capable of sensing certain changes of incidents or parameters and of communicating with other devices. WSNs could be very useful for providing support for some specific purposes, such as target tracking, surveillance, environmental monitoring, etc. Today’s sensors can monitor temperature, pressure, humidity, soil makeup, vehicular movement, noise levels, lighting conditions, the presence or absence of certain kinds of objects or substances, mechanical stress levels on attached objects, and other properties. As such types of networks are composed of resource-constrained tiny sensor nodes, many research works have tried to focus on efficient use of the available resources of the sensors. Energy is, in fact, one of the most critical factors that play a great role to define the duration of an active and operable network. Energy efficiency is often very crucial in these sorts of networks as the power sources of the inexpensive sensors are (in most of the cases) not replaceable after deployment. If any intermediate node between any two communicating nodes runs out of battery power, the link between the end nodes is eventually broken. So any protocol should ensure a competent way of utilizing the energies of the sensors so that a fair connectivity of the network could be ensured throughout its operation time. Energy efficiency is also very necessary to maximize the lifetime of the network
    corecore