1,006 research outputs found

    Scheduling strategies for LTE uplink with flow behaviour analysis

    Get PDF
    Long Term Evolution (LTE) is a cellular technology developed to support\ud diversity of data traffic at potentially high rates. It is foreseen to extend the capacity and improve the performance of current 3G cellular networks. A key\ud mechanism in the LTE traffic handling is the packet scheduler, which is in charge of allocating resources to active flows in both the frequency and time dimension. In this paper we present a performance comparison of two distinct scheduling schemes for LTE uplink (fair fixed assignment and fair work-conserving) taking into account both packet level characteristics and flow level dynamics due to the random user behaviour. For that purpose, we apply a combined analytical/simulation approach which enables fast evaluation of performance measures such as mean flow transfer times manifesting the impact of resource allocation strategies. The results show that the resource allocation strategy has a crucial impact on performance and that some trends are observed only if flow level dynamics are considered

    Performance of LTE network for VoIP users

    Get PDF
    With the arrival of LTE standard, it is expected that the mobile voice services paradigm will shift from the circuit switched to fully packet switched mode supporting the VoIP services. VoIP services took quite a bit of time before they were accepted as the main stream telephony service in the fixed networks. To provide VoIP services over the LTE networks with appropriate QoS, it is necessary to analyse the performance of such services and optimise the network parameters. This paper analyses the performance of VoIP services on the LTE network using the FD and the SMP packet scheduling techniques. This work identifies and analyses the features of above LTE packet scheduling techniques to enhance the QoS of VoIP services. An OPNET-based simulation model is used to analyse the performance of VoIP services on the LTE network by incorporating G.711 and G.723 speech coders. The work also studied the performance of VoIP services in variable transmission channel conditions

    Scheduling for Multi-Camera Surveillance in LTE Networks

    Full text link
    Wireless surveillance in cellular networks has become increasingly important, while commercial LTE surveillance cameras are also available nowadays. Nevertheless, most scheduling algorithms in the literature are throughput, fairness, or profit-based approaches, which are not suitable for wireless surveillance. In this paper, therefore, we explore the resource allocation problem for a multi-camera surveillance system in 3GPP Long Term Evolution (LTE) uplink (UL) networks. We minimize the number of allocated resource blocks (RBs) while guaranteeing the coverage requirement for surveillance systems in LTE UL networks. Specifically, we formulate the Camera Set Resource Allocation Problem (CSRAP) and prove that the problem is NP-Hard. We then propose an Integer Linear Programming formulation for general cases to find the optimal solution. Moreover, we present a baseline algorithm and devise an approximation algorithm to solve the problem. Simulation results based on a real surveillance map and synthetic datasets manifest that the number of allocated RBs can be effectively reduced compared to the existing approach for LTE networks.Comment: 9 pages, 10 figure

    Performance Comparison of Downlink Packet Scheduling Algorithms in LTE Network

    Get PDF
    Long Term Evolution (LTE) was introduced by the Third-Generation Partnership Project (3GPP) and is considered as the latest step towards the fourth generation of radio technology. This paper investigates the performance of well-known packet scheduling algorithms such as Proportion Fair (PF), Maximum- Largest Weighted Delay First (M-LWDF), Exponential Proportion Fair (EXP/PF), Frame Level Scheduler (FLS), Exponential rule (EXP rule), and Logarithmic rule (LOG Rule) in terms of delay, throughput, and packet loss ratio (PLR) by using the LTE-Sim open source simulator. Different traffic types are used, and Simulation results show that in video traffic, FLS and EXP algorithms provide a higher system throughput compared to other algorithms while keeping the delay and packet loss ratio small. However, in the case of best-effort traffic, results show a high delay and PLR with low throughput. The main contribution of this paper is to determine the appropriate downlink scheduling algorithm for VOIP, video, and best-effort traffics in 3GPP LTE

    THROUGHPUT OPTIMIZATION AND ENERGY EFFICIENCY OF THE DOWNLINK IN THE LTE SYSTEM

    Get PDF
    Nowadays, the usage of smart phones is very popular. More and more people access the Internet with their smart phones. This demands higher data rates from the mobile network operators. Every year the number of users and the amount of information is increasing dramatically. The wireless technology should ensure high data rates to be able to compete with the wire-based technology. The main advantage of the wireless system is the ability for user to be mobile. The 4G LTE system made it possible to gain very high peak data rates. The purpose of this thesis was to investigate the improvement of the system performance for the downlink based on different antenna configurations and different scheduling algorithms. Moreover, the fairness between the users using different schedulers has been analyzed and evaluated. Furthermore, the energy efficiency of the scheduling algorithms in the downlink of LTE systems has been considered. Some important parts of the LTE system are described in the theoretical part of this thesis.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A New Downlink Scheduling Algorithm Proposed for Real Time Traffic in LTE System

    Get PDF
    The Third Generation Partnership Project (3GPP) has developed a new cellular standard based packet switching allowing high data rate, 100 Mbps in Downlink and 50 Mbps in Uplink, and having the flexibility to be used in different bandwidths ranging from 1.4 MHz up to 20 MHz, this standard is termed LTE (Long Term Evolution). Radio Resource Management (RRM) procedure is one of the key design roles for improving LTE system performance, Packet scheduling is one of the RRM mechanisms and it is responsible for radio resources allocation, However, Scheduling algorithms are not defined in 3GPP specifications. Therefore, it gets a track interests for researchers. In this paper we proposed a new LTE scheduling algorithm and we compared its performances with other well known algorithms such as Proportional Fairness (PF), Modified Largest Weighted Delay First (MLWDF), and Exponential Proportional Fairness (EXPPF) in downlink direction. The simulation results shows that the proposed scheduler satisfies the quality of service (QoS) requirements of the real-time traffic in terms of packet loss ratio (PLR), average throughput and packet delay. This paper also discusses the key issues of scheduling algorithms to be considered in future traffic requirements

    Spatial Frequency Scheduling for Uplink SC-FDMA based Linearly Precoded LTE Multiuser MIMO Systems

    Get PDF
    This paper investigates the performance of the uplink single carrier (SC) frequency division multiple access (FDMA) based linearly precoded multiuser multiple input multiple output (MIMO) systems with frequency domain packet scheduling. A mathematical expression of the received signal to interference plus noise ratio (SINR) for the studied systems is derived and a utility function based spatial frequency packet scheduling algorithms is investigated. The schedulers are shown to be able to exploit the available multiuser diversity in time, frequency and spatial domains
    corecore