1,976 research outputs found

    Bisimulation Relations Between Automata, Stochastic Differential Equations and Petri Nets

    Get PDF
    Two formal stochastic models are said to be bisimilar if their solutions as a stochastic process are probabilistically equivalent. Bisimilarity between two stochastic model formalisms means that the strengths of one stochastic model formalism can be used by the other stochastic model formalism. The aim of this paper is to explain bisimilarity relations between stochastic hybrid automata, stochastic differential equations on hybrid space and stochastic hybrid Petri nets. These bisimilarity relations make it possible to combine the formal verification power of automata with the analysis power of stochastic differential equations and the compositional specification power of Petri nets. The relations and their combined strengths are illustrated for an air traffic example.Comment: 15 pages, 4 figures, Workshop on Formal Methods for Aerospace (FMA), EPTCS 20m 201

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    Semantic Embedding of Petri Nets into Event-B

    Full text link
    We present an embedding of Petri nets into B abstract systems. The embedding is achieved by translating both the static structure (modelling aspect) and the evolution semantics of Petri nets. The static structure of a Petri-net is captured within a B abstract system through a graph structure. This abstract system is then included in another abstract system which captures the evolution semantics of Petri-nets. The evolution semantics results in some B events depending on the chosen policies: basic nets or high level Petri nets. The current embedding enables one to use conjointly Petri nets and Event-B in the same system development, but at different steps and for various analysis.Comment: 16 pages, 3 figure

    Dependability Analysis of Control Systems using SystemC and Statistical Model Checking

    Get PDF
    Stochastic Petri nets are commonly used for modeling distributed systems in order to study their performance and dependability. This paper proposes a realization of stochastic Petri nets in SystemC for modeling large embedded control systems. Then statistical model checking is used to analyze the dependability of the constructed model. Our verification framework allows users to express a wide range of useful properties to be verified which is illustrated through a case study

    Using Colored Stochastic Petri Net (CS-PN) software for protocol specification, validation, and evaluation

    Get PDF
    The specification, verification, validation, and evaluation, which make up the different steps of the CS-PN software are outlined. The colored stochastic Petri net software is applied to a Wound/Wait protocol decomposable into two principal modules: request or couple (transaction, granule) treatment module and wound treatment module. Each module is specified, verified, validated, and then evaluated separately, to deduce a verification, validation and evaluation of the complete protocol. The colored stochastic Petri nets tool is shown to be a natural extension of the stochastic tool, adapted to distributed systems and protocols, because the color conveniently takes into account the numerous sites, transactions, granules and messages

    Formal requirements modeling with executable use cases and Coloured Petri Nets

    Get PDF
    This paper presents executable use cases (EUCs), which constitute a model-based approach to requirements engineering. EUCs may be used as a supplement to model-driven development (MDD) and can describe and link user-level requirements and more technical software specifications. In MDD, user-level requirements are not always explicitly described, since usually it is sufficient that one provides a specification, or platform-independent model, of the software that is to be developed. Therefore, a combination of EUCs and MDD may have potential to cover the path from user-level requirements via specifications to implementations of computer-based systems

    Petri nets with may/must semantics: Preserving properties through data refinements

    Get PDF
    Many systems used in process managements, like workflow systems, are developed in a top-down fashion, when the original design is refined at each step bringing it closer to the underlying reality. Underdefined specifications cannot however be used for verification, since both false positives and false negatives can be reported. In this paper we introduce colored Petri nets where guards can be evaluated to true, false and indefinite values, the last ones reflecting underspecification. This results in the semantics of Petri nets with may- and must-enableness and firings. In this framework we introduce property-preserving refinements that allow for verification in an early design phase. We present results on property preservation through refinements. We also apply our framework to workflow nets, introduce notions of may- and must-soundness and show that they are preserved through refinements. We shortly describe a prototype under implementation
    • …
    corecore