43 research outputs found

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    Numerical and experimental study of electroadhesion to enable manufacturing automation

    Get PDF
    Robotics and autonomous systems (RAS) have great potential to propel the world to future growth. Electroadhesion is a promising and potentially revolutionising material handling technology for manufacturing automation applications. There is, however, a lack of an in-depth understanding of this electrostatic adhesion phenomenon based on a confident electroadhesive pad design, manufacture, and testing platform and procedure. This Ph.D. research endeavours to obtain a more comprehensive understanding of electroadhesion based on an extensive literature review, theoretical modelling, electrostatic simulation, and experimental validation based on a repeatable pad design, manufacture, and testing platform and procedure. [Continues.

    Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda

    Get PDF
    Die vorliegende Dissertation mit dem Titel “Towards understanding of climbing, tip-over prevention and self-righting behaviors in Hexapoda” untersucht in drei Studien exemplarisch, wie (i) Wüstenameisen ihre Beine einsetzen um An- und Abstiege zu überwinden, wie (ii) Wüsten- und Waldameisen ein Umkippen an steilen Anstiegen vermeiden, und wie sich (iii) Madagaskar-Fauchschaben, Amerikanische Großschaben und Blaberus discoidalis Audinet-Servill, 1839 aus Rückenlagen drehen und aufrichten. Neuartige biomechanischen Beschreibungen umfassen unter anderem: Impuls- und Kraftwirkungen einzelner Ameisenbeine auf den Untergrund beim Bergauf- und Bergabklettern, Kippmomente bei kletternden Ameisen, Energiegebirge-Modelle (energy landscapes) zur Quantifizierung der Körperform für die funktionelle Beschreibung des Umdrehens aus der Rückenlage

    Climbing and Walking Robots

    Get PDF
    With the advancement of technology, new exciting approaches enable us to render mobile robotic systems more versatile, robust and cost-efficient. Some researchers combine climbing and walking techniques with a modular approach, a reconfigurable approach, or a swarm approach to realize novel prototypes as flexible mobile robotic platforms featuring all necessary locomotion capabilities. The purpose of this book is to provide an overview of the latest wide-range achievements in climbing and walking robotic technology to researchers, scientists, and engineers throughout the world. Different aspects including control simulation, locomotion realization, methodology, and system integration are presented from the scientific and from the technical point of view. This book consists of two main parts, one dealing with walking robots, the second with climbing robots. The content is also grouped by theoretical research and applicative realization. Every chapter offers a considerable amount of interesting and useful information

    Development of a Wall Climbing Robot and Ground Penetrating Radar System for NonDestructive Testing of Vertical Safety Critical Concrete Structures

    Get PDF
    This research aims to develop a unique adhesion mechanism for wall climbing robot to automate the technology of non-destructive testing (NDT) of large safety critical reinforced concrete structures such as nuclear power plants, bridge columns, dams etc. This research work investigates the effect of key design parameters involved in optimizing the adhesion force achieved from rare earth neodymium magnets. In order to penetrate a nominal concrete cover to achieve magnetic coupling with buried rebar and generate high enough adhesion force by using minimum number of permanent magnets, criteria such as distance between multiple magnets, thickness of flux concentrator are evaluated by implementing finite element analysis (FEA). The proposed adhesion module consists of three N42 grade neodymium magnets arranged in a unique arrangement on a flux concentrator called yoke. The preliminary FEA results suggest that, using two yoke modules with minimum distance between them generate 82 N higher adhesion force compared to a single module system with higher forceto-weight ratio of 4.36. Presence of multiple rebars in a dense mesh setting can assist the adhesion module to concentrate the magnetic flux along separate rebars. This extended concentration area has led to higher adhesion force of 135.73 N as well as enabling the robot to take turns. Results suggest that, having a 50×50 mm rebar meshing can sustain steep robot rotational movement along it’s centre of gravity where the adhesion force can fall as low as 150 N. A small, mobile prototype robot with on-board force sensor is built that exhibited 3600 of manoeuvrability on a 50×50 mm meshed rebars test rig with maximum adhesion force of 108 N at 35 mm air gap. Both experiment and simulationresults prove that the magnetic adhesion mechanism can generate efficient adhesion force for the climbing robot to operate on vertical reinforced concrete structures. In terms of the NDT sensor, an in-depth analysis of the ground penetrating radar (GPR) is carried out to develop a low cost operational laboratory prototype. A one-dimensional numerical framework based on finite difference time domain (FDTD) method is developed to model response behaviour of a GPR. The effects of electrical properties such as dielectric constant, conductivity of the media are evaluated. A Gaussian shaped pulse is used as source which propagates through the 1D array grid, and the pulse interactions at different media interfaces are investigated. A real life application of GPR to detect a buried steel bar in 1 m thick concrete block is modelled, and the results present 100% accurate detection of the steel bar along with measured depth of the concrete cover. The developed framework could be implemented to model multi-layer dielectric blocks with detection capability of various buried objects. Experimental models are built by utilizing a proposed antenna miniaturization technique of dipole antenna with additional radiating arms. The resultant reflection coefficient values indicate a reduction of 55% and 44% in length reduction compared to a conventional 100 MHz and 200 MHz dipole antenna respectively. The GPR transmitting pulse generator features an enhanced tuneable feature to make the GPR system more adaptable to various environmental conditions. The prototype pulse generator circuit can produce pulses with variable width from 750 ps to 10 ns. The final assembled robotic GPR system’s performance is validated by its capability of detecting and localizing an aluminium sheet and a rebar of 12 mm diameter buried under a test rig built of wood to mimic the concrete structure environment. The final calculations reveal a depth error of +0.1 m. However, the key focus of this work is to prove the design concept and the error in measurement can be addressed by utilizing narrower bandwidth pulse that the proposed pulse generator is capable of generating. In general, the proposed robotic GPR system developed in this research proves the concept of feasibility of undertaking inspection procedure on large concrete structures in hazardous environments that may not be accessible to human inspector

    Design and analysis of active fluid-and-cellular solid composites for controllable stiffness robotic elements

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2009.Includes bibliographical references (leaves 107-108).The purpose of this thesis is to investigate the use of a new class of materials for realizing soft robots. Specifically, meso-scale composites--composed of cellular solids impregnated with active fluids-were be designed to have controllable stiffness to take the form of a continuous body of a soft robot. This represents an improvement compared to past efforts in soft robotics, which often involved modifying the infrastructure of current, rigid robots to yield softer ones. This latter approach often faced the challenges of developing actuators that were "soft" but still discrete, and were limited in performance. In contrast, the controllable-stiffness composites proposed in this thesis eliminate the need for multiple actuators; a single structure can transition between various states to serve as both rigid, load-bearing components as well as morphable, compliant ones. While the vast range of fluid-foam combinations for such an application have yet to be explored, the work presented here focuses on a specific composite: open-cell polyurethane foam impregnated with wax. This type of composite can be thermally activated to exhibit both solid and nearly fluid states (while the wax can be melted to become a fluid, the foam holds the composite together as a pseudo-solid). This thesis discusses the research that has been conducted to 1) characterize the mechanical properties of wax-foam composites as well as 2) investigate possible ways in which the composites can be used as robotic components.by Nadia G. Cheng.S.M

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    Wall-Shaped Hierarchical Microstructure for Gecko-Like Attachment

    Get PDF
    Temporary biological attachment systems have long intrigued scientists and engineers because the animals that possess these systems are capable of climbing walls and even walking on ceilings irrespective of their surface properties. However, unlike prototype biological spatulate contact elements, which show a non-sticky default state, strong shear-induced attachment, and insensitivity to surface conditions, current biomimetic microstructured adhesives are deficient in these abilities. As an alternative to existing bio-inspired dry adhesives, a wall-shaped hierarchical microstructure has been suggested, but it is still unclear how loading and surface conditions, as well as material and geometrical properties affect the adhesive and frictional performance of the microstructure. It is also evident that its current mold-based manufacture can be considered impractical. To this end, the attachment performance of wall-shaped adhesive microstructures in various conditions, along with a new manufacturing technique, was examined, focusing on the following. 1) Developing a novel, cost-effective method for fabricating shear-activated biomimetic adhesives. 2) Finding the effects of loading condition (pre-load, pulling angle, and preliminary displacement), with the goal of gaining insight into how to use the adhesive microstructures. 3) Understanding the effects of the counterface surface conditions (topography and chemistry), with the goal of gaining insight into where to use the adhesive microstructures. 4) Investigating the effects of the microstructure shape and material properties, with the goal of gaining insight into what path to take to improve their attachment/detachment performance.Ph.D

    Inherently Elastic Actuation for Soft Robotics

    Get PDF
    corecore