2,262 research outputs found

    A new class of two-channel biorthogonal filter banks and wavelet bases

    Get PDF
    We propose a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters

    Circulant and skew-circulant matrices as new normal-form realization of IIR digital filters

    Get PDF
    Normal-form fixed-point state-space realization of IIR (infinite-impulse response) filters are known to be free from both overflow oscillations and roundoff limit cycles, provided magnitude truncation arithmetic is used together with two's-complement overflow features. Two normal-form realizations are derived that utilize circulant and skew-circulant matrices as their state transition matrices. The advantage of these realizations is that the A-matrix has only N (rather than N2) distinct elements and is amenable to efficient memory-oriented implementation. The problem of scaling the internal signals in these structures is addressed, and it is shown that an approximate solution can be obtained through a numerical optimization method. Several numerical examples are included

    Cyclic LTI systems in digital signal processing

    Get PDF
    Cyclic signal processing refers to situations where all the time indices are interpreted modulo some integer L. In such cases, the frequency domain is defined as a uniform discrete grid (as in L-point DFT). This offers more freedom in theoretical as well as design aspects. While circular convolution has been the centerpiece of many algorithms in signal processing for decades, such freedom, especially from the viewpoint of linear system theory, has not been studied in the past. In this paper, we introduce the fundamentals of cyclic multirate systems and filter banks, presenting several important differences between the cyclic and noncyclic cases. Cyclic systems with allpass and paraunitary properties are studied. The paraunitary interpolation problem is introduced, and it is shown that the interpolation does not always succeed. State-space descriptions of cyclic LTI systems are introduced, and the notions of reachability and observability of state equations are revisited. It is shown that unlike in traditional linear systems, these two notions are not related to the system minimality in a simple way. Throughout the paper, a number of open problems are pointed out from the perspective of the signal processor as well as the system theorist

    The role of lossless systems in modern digital signal processing: a tutorial

    Get PDF
    A self-contained discussion of discrete-time lossless systems and their properties and relevance in digital signal processing is presented. The basic concept of losslessness is introduced, and several algebraic properties of lossless systems are studied. An understanding of these properties is crucial in order to exploit the rich usefulness of lossless systems in digital signal processing. Since lossless systems typically have many input and output terminals, a brief review of multiinput multioutput systems is included. The most general form of a rational lossless transfer matrix is presented along with synthesis procedures for the FIR (finite impulse response) case. Some applications of lossless systems in signal processing are presented

    Tree-structured complementary filter banks using all-pass sections

    Get PDF
    Tree-structured complementary filter banks are developed with transfer functions that are simultaneously all-pass complementary and power complementary. Using a formulation based on unitary transforms and all-pass functions, we obtain analysis and synthesis filter banks which are related through a transposition operation, such that the cascade of analysis and synthesis filter banks achieves an all-pass function. The simplest structure is obtained using a Hadamard transform, which is shown to correspond to a binary tree structure. Tree structures can be generated for a variety of other unitary transforms as well. In addition, given a tree-structured filter bank where the number of bands is a power of two, simple methods are developed to generate complementary filter banks with an arbitrary number of channels, which retain the transpose relationship between analysis and synthesis banks, and allow for any combination of bandwidths. The structural properties of the filter banks are illustrated with design examples, and multirate applications are outlined

    Passive cascaded-lattice structures for low-sensitivity FIR filter design, with applications to filter banks

    Get PDF
    A class of nonrecursive cascaded-lattice structures is derived, for the implementation of finite-impulse response (FIR) digital filters. The building blocks are lossless and the transfer function can be implemented as a sequence of planar rotations. The structures can be used for the synthesis of any scalar FIR transfer function H(z) with no restriction on the location of zeros; at the same time, all the lattice coefficients have magnitude bounded above by unity. The structures have excellent passband sensitivity because of inherent passivity, and are automatically internally scaled, in an L_2 sense. The ideas are also extended for the realization of a bank of MFIR transfer functions as a cascaded lattice. Applications of these structures in subband coding and in multirate signal processing are outlined. Numerical design examples are included

    Minimal structures for the implementation of digital rational lossless systems

    Get PDF
    Digital lossless transfer matrices and vectors (power-complementary vectors) are discussed for applications in digital filter bank systems, both single rate and multirate. Two structures for the implementation of rational lossless systems are presented. The first structure represents a characterization of single-input, multioutput lossless systems in terms of complex planar rotations, whereas the second structure offers a representation of M-input, M-output lossless systems in terms of unit-norm vectors. This property makes the second structure desirable in applications that involve optimization of the parameters. Modifications of the second structure for implementing single-input, multioutput, and lossless bounded real (LBR) systems are also included. The main importance of the structures is that they are completely general, i.e. they span the entire set of M×1 and M×M lossless systems. This is demonstrated by showing that any such system can be synthesized using these structures. The structures are also minimal in the sense that they use the smallest number of scalar delays and parameters to implement a lossless system of given degree and dimensions. A design example to demonstrate the main results is included

    On arbitrary-level IIR and FIR filters

    Get PDF
    A recently published method for designing IIR (infinite-impulse-response) digital filters with multilevel magnitude responses is reinterpreted from a different viewpoint. On the basis of this interpretation, techniques for extending these results to the case of finite-impulse-response (FIR) filters are developed. An advantage of the authors' method is that, when the arbitrary-level filter is implemented, its power-complementary filter, which may be required in specific applications, is obtained simultaneously. Also, by means of a tuning factor (a parameter of the scaling matrix), it is possible to generate a whole family of arbitrary-level filters

    Approximation of L\"owdin Orthogonalization to a Spectrally Efficient Orthogonal Overlapping PPM Design for UWB Impulse Radio

    Full text link
    In this paper we consider the design of spectrally efficient time-limited pulses for ultrawideband (UWB) systems using an overlapping pulse position modulation scheme. For this we investigate an orthogonalization method, which was developed in 1950 by Per-Olov L\"owdin. Our objective is to obtain a set of N orthogonal (L\"owdin) pulses, which remain time-limited and spectrally efficient for UWB systems, from a set of N equidistant translates of a time-limited optimal spectral designed UWB pulse. We derive an approximate L\"owdin orthogonalization (ALO) by using circulant approximations for the Gram matrix to obtain a practical filter implementation. We show that the centered ALO and L\"owdin pulses converge pointwise to the same Nyquist pulse as N tends to infinity. The set of translates of the Nyquist pulse forms an orthonormal basis or the shift-invariant space generated by the initial spectral optimal pulse. The ALO transform provides a closed-form approximation of the L\"owdin transform, which can be implemented in an analog fashion without the need of analog to digital conversions. Furthermore, we investigate the interplay between the optimization and the orthogonalization procedure by using methods from the theory of shift-invariant spaces. Finally we develop a connection between our results and wavelet and frame theory.Comment: 33 pages, 11 figures. Accepted for publication 9 Sep 201
    corecore