15,277 research outputs found

    Selective Acoustic Focusing Using Time-Harmonic Reversal Mirrors

    Get PDF
    International audienceA mathematical study of the focusing properties of acoustic fields obtained by a time-reversal process is presented. The case of time-harmonic waves propagating in a nondissipative medium containing sound-soft obstacles is considered. In this context, the so-called D.O.R.T. method (decomposition of the time-reversal operator in French) was recently proposed to achieve selective focusing by computing the eigenelements of the time-reversal operator. The present paper describes a justification of this technique in the framework of the far field model, i.e., for an ideal time-reversal mirror able to reverse the far field of a scattered wave. Both cases of closed and open mirrors, that is, surrounding completely or partially the scatterers, are dealt with. Selective focusing properties are established by an asymptotic analysis for small and distant obstacles

    Fluid-loaded metasurfaces

    Full text link
    We consider wave propagation along fluid-loaded structures which take the form of an elastic plate augmented by an array of resonators forming a metasurface, that is, a surface structured with sub-wavelength resonators. Such surfaces have had considerable recent success for the control of wave propagation in electromagnetism and acoustics, by combining the vision of sub-wavelength wave manipulation, with the design, fabrication and size advantages associated with surface excitation. We explore one aspect of recent interest in this field: graded metasurfaces, but within the context of fluid-loaded structures. Graded metasurfaces allow for selective spatial frequency separation and are often referred to as exhibiting rainbow trapping. Experiments, and theory, have been developed for acoustic, electromagnetic, and even elastic, rainbow devices but this has not been approached for fluid-loaded structures that support surface waves coupled with the acoustic field in a bulk fluid. This surface wave, coupled with the fluid, can be used to create an additional effect by designing a metasurface to mode convert from surface to bulk waves. We demonstrate that sub-wavelength control is possible and that one can create both rainbow trapping and mode conversion phenomena for a fluid-loaded elastic plate model.Comment: 13 pages, 10 figure

    Shape derivatives of boundary integral operators in electromagnetic scattering. Part II : Application to scattering by a homogeneous dielectric obstacle

    Full text link
    We develop the shape derivative analysis of solutions to the problem of scattering of time-harmonic electromagnetic waves by a bounded penetrable obstacle. Since boundary integral equations are a classical tool to solve electromagnetic scattering problems, we study the shape differentiability properties of the standard electromagnetic boundary integral operators. The latter are typically bounded on the space of tangential vector fields of mixed regularity TH\sp{-1/2}(\Div_{\Gamma},\Gamma). Using Helmholtz decomposition, we can base their analysis on the study of pseudo-differential integral operators in standard Sobolev spaces, but we then have to study the G\^ateaux differentiability of surface differential operators. We prove that the electromagnetic boundary integral operators are infinitely differentiable without loss of regularity. We also give a characterization of the first shape derivative of the solution of the dielectric scattering problem as a solution of a new electromagnetic scattering problem.Comment: arXiv admin note: substantial text overlap with arXiv:1002.154

    Nonlinear pre-stress for cloaking from antiplane elastic waves

    Full text link
    A theory is presented showing that cloaking of objects from antiplane elastic waves can be achieved by elastic pre-stress of a neo-Hookean nonlinear elastic material. This approach would appear to eliminate the requirement of metamaterials with inhomogeneous anisotropic shear moduli and density. Waves in the pre-stressed medium are bent around the cloaked region by inducing inhomogeneous stress fields via pre-stress. The equation governing antiplane waves in the pre-stressed medium is equivalent to the antiplane equation in an unstressed medium with inhomogeneous and anisotropic shear modulus and isotropic scalar mass density. Note however that these properties are induced naturally by the pre-stress. Since the magnitude of pre-stress can be altered at will, this enables objects of varying size and shape to be cloaked by placing them inside the fluid-filled deformed cavity region.Comment: 21 pages, 4 figure

    On-surface radiation condition for multiple scattering of waves

    Full text link
    The formulation of the on-surface radiation condition (OSRC) is extended to handle wave scattering problems in the presence of multiple obstacles. The new multiple-OSRC simultaneously accounts for the outgoing behavior of the wave fields, as well as, the multiple wave reflections between the obstacles. Like boundary integral equations (BIE), this method leads to a reduction in dimensionality (from volume to surface) of the discretization region. However, as opposed to BIE, the proposed technique leads to boundary integral equations with smooth kernels. Hence, these Fredholm integral equations can be handled accurately and robustly with standard numerical approaches without the need to remove singularities. Moreover, under weak scattering conditions, this approach renders a convergent iterative method which bypasses the need to solve single scattering problems at each iteration. Inherited from the original OSRC, the proposed multiple-OSRC is generally a crude approximate method. If accuracy is not satisfactory, this approach may serve as a good initial guess or as an inexpensive pre-conditioner for Krylov iterative solutions of BIE
    • …
    corecore