1,271 research outputs found

    On signal-noise decomposition of timeseries using the continuous wavelet transform: Application to sunspot index

    Get PDF
    We show that the continuous wavelet transform can provide a unique decomposition of a timeseries in to 'signal-like' and 'noise-like' components: From the overall wavelet spectrum two mutually independent skeleton spectra can be extracted, allowing the separate detection and monitoring in even non-stationary timeseries of the evolution of (a) both stable but also transient, evolving periodicities, such as the output of low dimensional dynamical systems and (b) scale-invariant structures, such as discontinuities, self-similar structures or noise. An indicative application to the monthly-averaged sunspot index reveals, apart from the well-known 11-year periodicity, 3 of its harmonics, the 2-year periodicity (quasi-biennial oscillation, QBO) and several more (some of which detected previously in various solar, earth-solar connection and climate indices), here proposed being just harmonics of the QBO, in all supporting the double-cycle solar magnetic dynamo model (Benevolenskaya, 1998, 2000). The scale maximal spectrum reveals the presence of 1/f fluctuations with timescales up to 1 year in the sunspot number, indicating that the solar magnetic configurations involved in the transient solar activity phenomena with those characteristic timescales are in a self-organized-critical state (SOC), as previously proposed for the solar flare occurence (Lu and Hamilton, 1991).Comment: 22 pages, 2 figure

    FFT-LB modeling of thermal liquid-vapor systems

    Full text link
    We further develop a thermal LB model for multiphase flows. In the improved model, we propose to use the FFT scheme to calculate both the convection term and external force term. The usage of FFT scheme is detailed and analyzed. By using the FFT algorithm spatiotemporal discretization errors are decreased dramatically and the conservation of total energy is much better preserved. A direct consequence of the improvement is that the unphysical spurious velocities at the interfacial regions can be damped to neglectable scale. Together with the better conservation of total energy, the more accurate flow velocities lead to the more accurate temperature field which determines the dynamical and final states of the system. With the new model, the phase diagram of the liquid-vapor system obtained from simulation is more consistent with that from theoretical calculation. Very sharp interfaces can be achieved. The accuracy of simulation results are also verified by the Laplace law. The FFT scheme can be easily applied to other models for multiphase flows.Comment: 34 pages, 21 figure

    The Development of Biomimetic Spherical Hydroxyapatite/Polyamide 66 Biocomposites as Bone Repair Materials

    Get PDF
    A novel biomedical material composed of spherical hydroxyapatite (s-HA) and polyamide 66 (PA) biocomposite (s-HA/PA) was prepared, and its composition, mechanical properties, and cytocompatibility were characterized and evaluated. The results showed that HA distributed uniformly in the s-HA/PA matrix. Strong molecule interactions and chemical bonds were presented between the s-HA and PA in the composites confirmed by IR and XRD. The composite had excellent compressive strength in the range between 95 and 132 MPa, close to that of natural bone. In vitro experiments showed the s-HA/PA composite could improve cell growth, proliferation, and differentiation. Therefore, the developed s-HA/PA composites in this study might be used for tissue engineering and bone repair

    Excited Baryons in Holographic QCD

    Full text link
    The light-front holographic QCD approach is used to describe baryon spectroscopy and the systematics of nucleon transition form factors.Comment: Invited talk presented by GdT at NSTAR 2011, the 8th International Workshop on the Physics of Excited Nucleons, Jefferson Laboratory, May 17 - 20, 201

    Influences of various magnetospheric and ionospheric current systems on geomagnetically induced currents around the world

    Get PDF
    Ground-based observations of geomagnetic field (B field) are usually a superposition of signatures from different source current systems in the magnetosphere and ionosphere. Fluctuating B fields generate geoelectric fields (E fields), which drive geomagnetically induced currents (GIC) in technological conducting media at the Earth's surface. We introduce a new Fourier integral B field model of east/west directed line current systems over a one-dimensional multilayered Earth in plane geometry. Derived layered-Earth profiles, given in the literature, are needed to calculate the surface impedance, and therefore reflection coefficient in the integral. The 2003 Halloween storm measurements were Fourier transformed for B field spectrum Levenberg-Marquardt least squares inversion over latitude. The inversion modeled strengths of the equatorial electrojets, auroral electrojets, and ring currents were compared to the forward problem computed strength. It is found the optimized and direct results match each other closely and supplement previous established studies about these source currents. Using this model, a data set of current system magnitudes may be used to develop empirical models linking solar wind activity to magnetospheric current systems. In addition, the ground E fields are also calculated directly, which serves as a proxy for computing GIC in conductor-based networks

    Functional Gradient Metallic Biomaterials: Techniques, Current Scenery, and Future Prospects in the Biomedical Field

    Get PDF
    Functional gradient materials (FGMs), as a modern group of materials, can provide multiple functions and are able to well mimic the hierarchical and gradient structure of natural systems. Because biomedical implants usually substitute the bone tissues and bone is an organic, natural FGM material, it seems quite reasonable to use the FGM concept in these applications. These FGMs have numerous advantages, including the ability to tailor the desired mechanical and biological response by producing various gradations, such as composition, porosity, and size; mitigating some limitations, such as stress-shielding effects; improving osseointegration; and enhancing electrochemical behavior and wear resistance. Although these are beneficial aspects, there is still a notable lack of comprehensive guidelines and standards. This paper aims to comprehensively review the current scenery of FGM metallic materials in the biomedical field, specifically its dental and orthopedic applications. It also introduces various processing methods, especially additive manufacturing methods that have a substantial impact on FGM production, mentioning its prospects and how FGMs can change the direction of both industry and biomedicine. Any improvement in FGM knowledge and technology can lead to big steps toward its industrialization and most notably for much better implant designs with more biocompatibility and similarity to natural tissues that enhance the quality of life for human beings
    corecore