98 research outputs found

    Stability of sinusoidal responses of marginally stable bandpass sigma delta modulators

    Get PDF
    In this paper, we analyze the stability of the sinusoidal responses of second order interpolative marginally stable bandpass sigma delta modulators (SDMs) with the sum of the numerator and denominator polynomials equal to one and explore new results on the more general second order interpolative marginally stable bandpass SDMs. These results can be further extended to the high order interpolative marginally stable bandpass SDMs

    Global stability, limit cycles and chaotic behaviors of second order interpolative sigma delta modulators

    Get PDF
    It is well known that second order lowpass interpolative sigma delta modulators (SDMs) may suffer from instability and limit cycle problems when the magnitudes of the input signals are at large and at intermediate levels, respectively. In order to solve these problems, we propose to replace the second order lowpass interpolative SDMs to a specific class of second order bandpass interpolative SDMs with the natural frequencies of the loop filters very close to zero. The global stability property of this class of second order bandpass interpolative SDMs is characterized and some interesting phenomena are discussed. Besides, conditions for the occurrence of limit cycle and fractal behaviors are also derived, so that these unwanted behaviors will not happen or can be avoided. Moreover, it is found that these bandpass SDMs may exhibit irregular and conical-like chaotic patterns on the phase plane. By utilizing these chaotic behaviors, these bandpass SDMs can achieve higher signal-to-noise ratio (SNR) and tonal suppression than those of the original lowpass SDMs

    Symbolic analysis for some planar piecewise linear maps

    Get PDF
    In this paper a class of linear maps on the 2-torus and some planar piecewise isometries are discussed. For these discontinuous maps, by introducing codings underlying the map operations, symbolic descriptions of the dynamics and admissibility conditions for itineraries are given, and explicit expressions in terms of the codings for periodic points are presented.Comment: 4 Figure

    Packings induced by piecewise isometries cannot contain the Arbelos

    Get PDF
    Copyright © American Institute of Mathematical SciencesPlanar piecewise isometries with convex polygonal atoms that are piecewise irrational rotations can naturally generate a packing of phase space given by periodic cells that are discs. We show that such packings cannot contain certain subpackings of Apollonian packings, namely those belonging to a family of Arbelos subpackings. We do this by showing that the unit complex numbers giving the directions of tangency within such an isometric-generated packing lie in a finitely generated subgroup of the circle group, whereas this is not the case for the Arbelos subpackings. In the opposite direction, we show that, given an arbitrary disc packing of a polygonal region, there is a piecewise isometry whose regular cells approximate the given packing to any specified precision

    Cone exchange transformations and boundedness of orbits

    Get PDF
    Copyright © 2009 Cambridge University PressWe introduce a class of two-dimensional piecewise isometries on the plane that we refer to as cone exchange transformations (CETs). These are generalizations of interval exchange transformations (IETs) to 2D unbounded domains. We show for a typical CET that boundedness of orbits is determined by ergodic properties of an associated IET and a quantity we refer to as the ‘flux at infinity’. In particular we show, under an assumption of unique ergodicity of the associated IET, that a positive flux at infinity implies unboundedness of almost all orbits outside some bounded region, while a negative flux at infinity implies boundedness of all orbits. We also discuss some examples of CETs for which the flux is zero and/or we do not have unique ergodicity of the associated IET; in these cases (which are of great interest from the point of view of applications such as dual billiards) it remains an outstanding problem to find computable necessary and sufficient conditions for boundedness of orbits

    Tangent-Free Property for Periodic Cells Generated by Some General Piecewise Isometries

    Get PDF
    Iterating an orientation-preserving piecewise isometry T of n-dimensional Euclidean space, the phase space can be partitioned with full measure into the union of the rational set consisting of periodically coded points, and the complement of the rational set is usually called the exceptional set. The tangencies between the periodic cells have been studied in some previous papers, and the results showed that almost all disk packings for certain families of planar piecewise isometries have no tangencies. In this paper, the authors further investigate the structure of any periodic cells for a general piecewise isometry of even dimensional Euclidean space and the tangencies between the periodic cells. First, we show that each periodic cell is a symmetrical body to a center if the piecewise isometry is irrational; this result is a generalization of the results in some previously published papers. Second, we show that the periodic cell packing induced by an invertible irrational planar piecewise rotation, such as the Sigma-Delta map and the overflow map, has no tangencies. And furthermore, we generalize the result to general even dimensional Euclidean spaces. Our results generalize and strengthen former research results on this topic

    Theory and practical issues of sigma delta modulators-part I: theory

    Get PDF
    This invited seminar is discussed on practical issues of sigma delta modulators

    Analysis of Nonlinear Behaviors, Design and Control of Sigma Delta Modulators

    Get PDF
    M PhilSigma delta modulators (SDMs) have been widely applied in analogue-to-digital (A/D) conversion for many years. SDMs are becoming more and more popular in power electronic circuits because it can be viewed and applied as oversampled A/D converters with low resolution quantizers. The basic structure of an SDM under analytical investigation consists of a loop filter and a low bit quantizer connected by a negative feedback loop. Although there are numerous advantages of SDMs over other A/D converters, the application of SDMs is limited by the unboundedness of the system states and their nonlinear behaviors. It was found that complex dynamical behaviors exist in low bit SDMs, and for a bandpass SDM, the state space dynamics can be represented by elliptic fractal patterns confined within two trapezoidal regions. In all, there are three types of nonlinear behaviors, namely fixed point, limit cycle and chaotic behaviors. Related to the unboundedness issue, divergent behavior of system states is also a commonly discovered phenomenon. Consequently, how to design and control the SDM so that the system states are bounded and the unwanted nonlinear behaviors are avoided is a hot research topic worthy of investigated. In our investigation, we perform analysis on such complex behaviors and determine a control strategy to maintain the boundedness of the system states and avoid the occurrence of limit cycle behavior. For the design problem, we impose constraints based on the performance of an SDM and determine an optimal design for the SDM. The results are significantly better than the existing approaches
    corecore