2,113 research outputs found

    Modeling Compliant Grasps Exploiting Environmental Constraints

    Get PDF
    In this paper we present a mathematical framework to describe the interaction between compliant hands and environmental constraints during grasping tasks. In the proposed model, we considered compliance at wrist, joint and contact level. We modeled the general case in which the hand is in contact with the object and the surrounding environment. All the other contact cases can be derived from the proposed system of equations. We performed several numerical simulation using the SynGrasp Matlab Toolbox to prove the consistency of the proposed model. We tested different combinations of compliance as well as different reference inputs for the hand/arm system considered. This work has to be intended as a tool for compliant hand designer since it allows to tune compliance at different levels before the real hand realization. Furthermore, the same framework can be used for compliant hand simulation in order to study the interaction with the environmental constrains and to plan complex manipulation tasks

    Survey of Army/NASA rotorcraft aeroelastic stability research

    Get PDF
    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed

    Rotorcraft aeroelastic stability

    Get PDF
    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low-frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability in hover and forward flight, and analysis of tilt-rotor dynamic stability are considered. Results of parametric investigations of system behavior are presented, and correlation between theoretical results and experimental data from small and large scale wind tunnel and flight testing are discussed

    A survey of dextrous manipulation

    Get PDF
    technical reportThe development of mechanical end effectors capable of dextrous manipulation is a rapidly growing and quite successful field of research. It has in some sense put the focus on control issues, in particular, how to control these remarkably humanlike manipulators to perform the deft movement that we take for granted in the human hand. The kinematic and control issues surrounding manipulation research are clouded by more basic concerns such as: what is the goal of a manipulation system, is the anthropomorphic or functional design methodology appropriate, and to what degree does the control of the manipulator depend on other sensory systems. This paper examines the potential of creating a general purpose, anthropomorphically motivated, dextrous manipulation system. The discussion will focus on features of the human hand that permit its general usefulness as a manipulator. A survey of machinery designed to emulate these capabilities is presented. Finally, the tasks of grasping and manipulation are examined from the control standpoint to suggest a control paradigm which is descriptive, yet flexible and computationally efficient1

    Coordination Control of a Dual-Arm Exoskeleton Robot Using Human Impedance Transfer Skills

    Get PDF
    This paper has developed a coordination control method for a dual-arm exoskeleton robot based on human impedance transfer skills, where the left (master) robot arm extracts the human limb impedance stiffness and position profiles, and then transfers the information to the right (slave) arm of the exoskeleton. A computationally efficient model of the arm endpoint stiffness behavior is developed and a co-contraction index is defined using muscular activities of a dominant antagonistic muscle pair. A reference command consisting of the stiffness and position profiles of the operator is computed and realized by one robot in real-time. Considering the dynamics uncertainties of the robotic exoskeleton, an adaptive-robust impedance controller in task space is proposed to drive the slave arm tracking the desired trajectories with convergent errors. To verify the robustness of the developed approach, a study of combining adaptive control and human impedance transfer control under the presence of unknown interactive forces is conducted. The experimental results of this paper suggest that the proposed control method enables the subjects to execute a coordination control task on a dual-arm exoskeleton robot by transferring the stiffness from the human arm to the slave robot arm, which turns out to be effective

    Glove Exoskeleton for Extra-Vehicular Activities: Analysis of Requirements and Prototype Design

    Get PDF
    The objective of the thesis is the development of a prototype of a lightweight hand exoskeleton designed to be embedded in the gloved hand of an astronaut and to overcome the stiffness of the pressurized space suit. The system should be able to provide force and precision to the hand grip. The project involves various elements, in particular the analysis of the characteristics of the hand and of the EVA glove. Moreover solutions related to sensor and actuator should be investigated. Finally the study and the design of an appropriate robotic structure able to fullfit the requirements have to be performed

    Teleoperated and cooperative robotics : a performance oriented control design

    Get PDF
    • …
    corecore