10,949 research outputs found

    Inequalities for trace anomalies, length of the RG flow, distance between the fixed points and irreversibility

    Full text link
    I discuss several issues about the irreversibility of the RG flow and the trace anomalies c, a and a'. First I argue that in quantum field theory: i) the scheme-invariant area Delta(a') of the graph of the effective beta function between the fixed points defines the length of the RG flow; ii) the minimum of Delta(a') in the space of flows connecting the same UV and IR fixed points defines the (oriented) distance between the fixed points; iii) in even dimensions, the distance between the fixed points is equal to Delta(a)=a_UV-a_IR. In even dimensions, these statements imply the inequalities 0 =< Delta(a)=< Delta(a') and therefore the irreversibility of the RG flow. Another consequence is the inequality a =< c for free scalars and fermions (but not vectors), which can be checked explicitly. Secondly, I elaborate a more general axiomatic set-up where irreversibility is defined as the statement that there exist no pairs of non-trivial flows connecting interchanged UV and IR fixed points. The axioms, based on the notions of length of the flow, oriented distance between the fixed points and certain "oriented-triangle inequalities", imply the irreversibility of the RG flow without a global a function. I conjecture that the RG flow is irreversible also in odd dimensions (without a global a function). In support of this, I check the axioms of irreversibility in a class of d=3 theories where the RG flow is integrable at each order of the large N expansion.Comment: 24 pages, 3 figures; expanded intro, improved presentation, references added - CQ

    Weighted Frechet Means as Convex Combinations in Metric Spaces: Properties and Generalized Median Inequalities

    Full text link
    In this short note, we study the properties of the weighted Frechet mean as a convex combination operator on an arbitrary metric space, (Y,d). We show that this binary operator is commutative, non-associative, idempotent, invariant to multiplication by a constant weight and possesses an identity element. We also treat the properties of the weighted cumulative Frechet mean. These tools allow us to derive several types of median inequalities for abstract metric spaces that hold for both negative and positive Alexandrov spaces. In particular, we show through an example that these bounds cannot be improved upon in general metric spaces. For weighted Frechet means, however, such inequalities can solely be derived for weights equal or greater than one. This latter limitation highlights the inherent difficulties associated with working with abstract-valued random variables.Comment: 7 pages, 1 figure. Submitted to Probability and Statistics Letter

    Metric Cotype

    Get PDF
    We introduce the notion of metric cotype, a property of metric spaces related to a property of normed spaces, called Rademacher cotype. Apart from settling a long standing open problem in metric geometry, this property is used to prove the following dichotomy: A family of metric spaces F is either almost universal (i.e., contains any finite metric space with any distortion > 1), or there exists α > 0, and arbitrarily large n-point metrics whose distortion when embedded in any member of F is at least Ω((log n)^α). The same property is also used to prove strong non-embeddability theorems of L_q into L_p, when q > max{2,p}. Finally we use metric cotype to obtain a new type of isoperimetric inequality on the discrete torus
    • …
    corecore