176,337 research outputs found

    A new basis for eigenmodes on the Sphere

    Full text link
    The usual spherical harmonics YℓmY_{\ell m} form a basis of the vector space Vℓ{\cal V} ^{\ell} (of dimension 2ℓ+12\ell+1) of the eigenfunctions of the Laplacian on the sphere, with eigenvalue λℓ=−ℓ (ℓ+1)\lambda_{\ell} = -\ell ~(\ell +1). Here we show the existence of a different basis Φjℓ\Phi ^{\ell}_j for Vℓ{\cal V} ^{\ell}, where Φjℓ(X)≡(X⋅Nj)ℓ\Phi ^{\ell}_j(X) \equiv (X \cdot N_j)^{\ell}, the ℓth\ell ^{th} power of the scalar product of the current point with a specific null vector NjN_j. We give explicitly the transformation properties between the two bases. The simplicity of calculations in the new basis allows easy manipulations of the harmonic functions. In particular, we express the transformation rules for the new basis, under any isometry of the sphere. The development of the usual harmonics YℓmY_{\ell m} into thee new basis (and back) allows to derive new properties for the YℓmY_{\ell m}. In particular, this leads to a new relation for the YℓmY_{\ell m}, which is a finite version of the well known integral representation formula. It provides also new development formulae for the Legendre polynomials and for the special Legendre functions.Comment: 6 pages, no figure; new version: shorter demonstrations; new references; as will appear in Journal of Physics A. Journal of Physics A, in pres

    CP violation conditions in N-Higgs-doublet potentials

    Get PDF
    Conditions for CP violation in the scalar potential sector of general N-Higgs-doublet models (NHDMs) are analyzed from a group theoretical perspective. For the simplest two-Higgs-doublet model (2HDM) potential, a minimum set of conditions for explicit and spontaneous CP violation is presented. The conditions can be given a clear geometrical interpretation in terms of quantities in the adjoint representation of the basis transformation group for the two doublets. Such conditions depend on CP-odd pseudoscalar invariants. When the potential is CP invariant, the explicit procedure to reach the real CP-basis and the explicit CP transformation can also be obtained. The procedure to find the real basis and the conditions for CP violation are then extended to general NHDM potentials. The analysis becomes more involved and only a formal procedure to reach the real basis is found. Necessary conditions for CP invariance can still be formulated in terms of group invariants: the CP-odd generalized pseudoscalars. The problem can be completely solved for three Higgs-doublets.Comment: RevTeX4 used. Minor modifications, in particular, the parameter counting of ZZ. v3: Eqs.(28)-(31) correcte

    Representations of the Canonical group, (the semi-direct product of the Unitary and Weyl-Heisenberg groups), acting as a dynamical group on noncommuting extended phase space

    Full text link
    The unitary irreducible representations of the covering group of the Poincare group P define the framework for much of particle physics on the physical Minkowski space P/L, where L is the Lorentz group. While extraordinarily successful, it does not provide a large enough group of symmetries to encompass observed particles with a SU(3) classification. Born proposed the reciprocity principle that states physics must be invariant under the reciprocity transform that is heuristically {t,e,q,p}->{t,e,p,-q} where {t,e,q,p} are the time, energy, position, and momentum degrees of freedom. This implies that there is reciprocally conjugate relativity principle such that the rates of change of momentum must be bounded by b, where b is a universal constant. The appropriate group of dynamical symmetries that embodies this is the Canonical group C(1,3) = U(1,3) *s H(1,3) and in this theory the non-commuting space Q= C(1,3)/ SU(1,3) is the physical quantum space endowed with a metric that is the second Casimir invariant of the Canonical group, T^2 + E^2 - Q^2/c^2-P^2/b^2 +(2h I/bc)(Y/bc -2) where {T,E,Q,P,I,Y} are the generators of the algebra of Os(1,3). The idea is to study the representations of the Canonical dynamical group using Mackey's theory to determine whether the representations can encompass the spectrum of particle states. The unitary irreducible representations of the Canonical group contain a direct product term that is a representation of U(1,3) that Kalman has studied as a dynamical group for hadrons. The U(1,3) representations contain discrete series that may be decomposed into infinite ladders where the rungs are representations of U(3) (finite dimensional) or C(2) (with degenerate U(1)* SU(2) finite dimensional representations) corresponding to the rest or null frames.Comment: 25 pages; V2.3, PDF (Mathematica 4.1 source removed due to technical problems); Submitted to J.Phys.

    The matrix product representations for all valence bond states

    Full text link
    We introduce a simple representation for irreducible spherical tensor operators of the rotation group of arbitrary integer or half integer rank and use these tensor operators to construct matrix product states corresponding to all the variety of valence-bond states proposed in the Affleck-Kennedy-Lieb-Tasaki (AKLT) construction. These include the fully dimerized states of arbitrary spins, with uniform or alternating patterns of spins, which are ground states of Hamiltonians with nearest and next-nearest neighbor interactions, and the partially dimerized or AKLT/VBS (Valence Bond Solid) states, which are constructed from them by projection. The latter states are translation-invariant ground states of Hamiltonians with nearest-neighbor interactions.Comment: 24 pages, references added, the version which appears in the journa

    Group theory analysis of electrons and phonons in N-layer graphene systems

    Full text link
    In this work we study the symmetry properties of electrons and phonons in graphene systems as function of the number of layers. We derive the selection rules for the electron-radiation and for the electron-phonon interactions at all points in the Brillouin zone. By considering these selection rules, we address the double resonance Raman scattering process. The monolayer and bilayer graphene in the presence of an applied electric field are also discussed.Comment: 8 pages, 6 figure

    The bicomplex quantum Coulomb potential problem

    Full text link
    Generalizations of the complex number system underlying the mathematical formulation of quantum mechanics have been known for some time, but the use of the commutative ring of bicomplex numbers for that purpose is relatively new. This paper provides an analytical solution of the quantum Coulomb potential problem formulated in terms of bicomplex numbers. We define the problem by introducing a bicomplex hamiltonian operator and extending the canonical commutation relations to the form [X_i,P_k] = i_1 hbar xi delta_{ik}, where xi is a bicomplex number. Following Pauli's algebraic method, we find the eigenvalues of the bicomplex hamiltonian. These eigenvalues are also obtained, along with appropriate eigenfunctions, by solving the extension of Schrodinger's time-independent differential equation. Examples of solutions are displayed. There is an orthonormal system of solutions that belongs to a bicomplex Hilbert space.Comment: Clarifications; some figures removed; version to appear in Can. J. Phy
    • …
    corecore