9,203 research outputs found

    Properties of Some Classes of Structured Tensors

    Full text link
    In this paper, we extend some classes of structured matrices to higher order tensors. We discuss their relationships with positive semi-definite tensors and some other structured tensors. We show that every principal sub-tensor of such a structured tensor is still a structured tensor in the same class, with a lower dimension. The potential links of such structured tensors with optimization, nonlinear equations, nonlinear complementarity problems, variational inequalities and the nonnegative tensor theory are also discussed.Comment: arXiv admin note: text overlap with arXiv:1405.1288 by other author

    Centrosymmetric, Skew Centrosymmetric and Centrosymmetric Cauchy Tensors

    Full text link
    Recently, Zhao and Yang introduced centrosymmetric tensors. In this paper, we further introduce skew centrosymmetric tensors and centrosymmetric Cauchy tensors, and discuss properties of these three classes of structured tensors. Some sufficient and necessary conditions for a tensor to be centrosymmetric or skew centrosymmetric are given. We show that, a general tensor can always be expressed as the sum of a centrosymmetric tensor and a skew centrosymmetric tensor. Some sufficient and necessary conditions for a Cauchy tensor to be centrosymmetric or skew centrosymmetric are also given. Spectral properties on H-eigenvalues and H-eigenvectors of centrosymmetric, skew centrosymmetric and centrosymmetric Cauchy tensors are discussed. Some further questions on these tensors are raised

    Tensor Complementarity Problem and Semi-positive Tensors

    Full text link
    The tensor complementarity problem (\q, \mathcal{A}) is to \mbox{ find } \x \in \mathbb{R}^n\mbox{ such that }\x \geq \0, \q + \mathcal{A}\x^{m-1} \geq \0, \mbox{ and }\x^\top (\q + \mathcal{A}\x^{m-1}) = 0. We prove that a real tensor A\mathcal{A} is a (strictly) semi-positive tensor if and only if the tensor complementarity problem (\q, \mathcal{A}) has a unique solution for \q>\0 (\q\geq\0), and a symmetric real tensor is a (strictly) semi-positive tensor if and only if it is (strictly) copositive. That is, for a strictly copositive symmetric tensor A\mathcal{A}, the tensor complementarity problem (\q, \mathcal{A}) has a solution for all \q \in \mathbb{R}^n
    corecore