1,109 research outputs found

    Dirac's theorem for random regular graphs

    Get PDF
    We prove a `resilience' version of Dirac's theorem in the setting of random regular graphs. More precisely, we show that, whenever dd is sufficiently large compared to ε>0\varepsilon>0, a.a.s. the following holds: let G′G' be any subgraph of the random nn-vertex dd-regular graph Gn,dG_{n,d} with minimum degree at least (1/2+ε)d(1/2+\varepsilon)d. Then G′G' is Hamiltonian. This proves a conjecture of Ben-Shimon, Krivelevich and Sudakov. Our result is best possible: firstly, the condition that dd is large cannot be omitted, and secondly, the minimum degree bound cannot be improved.Comment: Final accepted version, to appear in Combinatorics, Probability & Computin

    Graph Theory and Networks in Biology

    Get PDF
    In this paper, we present a survey of the use of graph theoretical techniques in Biology. In particular, we discuss recent work on identifying and modelling the structure of bio-molecular networks, as well as the application of centrality measures to interaction networks and research on the hierarchical structure of such networks and network motifs. Work on the link between structural network properties and dynamics is also described, with emphasis on synchronization and disease propagation.Comment: 52 pages, 5 figures, Survey Pape
    • …
    corecore