33,963 research outputs found

    Properties of Pseudo-Primitive Words and their Applications

    Full text link
    A pseudo-primitive word with respect to an antimorphic involution \theta is a word which cannot be written as a catenation of occurrences of a strictly shorter word t and \theta(t). Properties of pseudo-primitive words are investigated in this paper. These properties link pseudo-primitive words with essential notions in combinatorics on words such as primitive words, (pseudo)-palindromes, and (pseudo)-commutativity. Their applications include an improved solution to the extended Lyndon-Sch\"utzenberger equation u_1 u_2 ... u_l = v_1 ... v_n w_1 ... w_m, where u_1, ..., u_l \in {u, \theta(u)}, v_1, ..., v_n \in {v, \theta(v)}, and w_1, ..., w_m \in {w, \theata(w)} for some words u, v, w, integers l, n, m \ge 2, and an antimorphic involution \theta. We prove that for l \ge 4, n,m \ge 3, this equation implies that u, v, w can be expressed in terms of a common word t and its image \theta(t). Moreover, several cases of this equation where l = 3 are examined.Comment: Submitted to International Journal of Foundations of Computer Scienc

    Multitriangulations, pseudotriangulations and primitive sorting networks

    Get PDF
    We study the set of all pseudoline arrangements with contact points which cover a given support. We define a natural notion of flip between these arrangements and study the graph of these flips. In particular, we provide an enumeration algorithm for arrangements with a given support, based on the properties of certain greedy pseudoline arrangements and on their connection with sorting networks. Both the running time per arrangement and the working space of our algorithm are polynomial. As the motivation for this work, we provide in this paper a new interpretation of both pseudotriangulations and multitriangulations in terms of pseudoline arrangements on specific supports. This interpretation explains their common properties and leads to a natural definition of multipseudotriangulations, which generalizes both. We study elementary properties of multipseudotriangulations and compare them to iterations of pseudotriangulations.Comment: 60 pages, 40 figures; minor corrections and improvements of presentatio

    Revisiting LFSMs

    Full text link
    Linear Finite State Machines (LFSMs) are particular primitives widely used in information theory, coding theory and cryptography. Among those linear automata, a particular case of study is Linear Feedback Shift Registers (LFSRs) used in many cryptographic applications such as design of stream ciphers or pseudo-random generation. LFSRs could be seen as particular LFSMs without inputs. In this paper, we first recall the description of LFSMs using traditional matrices representation. Then, we introduce a new matrices representation with polynomial fractional coefficients. This new representation leads to sparse representations and implementations. As direct applications, we focus our work on the Windmill LFSRs case, used for example in the E0 stream cipher and on other general applications that use this new representation. In a second part, a new design criterion called diffusion delay for LFSRs is introduced and well compared with existing related notions. This criterion represents the diffusion capacity of an LFSR. Thus, using the matrices representation, we present a new algorithm to randomly pick LFSRs with good properties (including the new one) and sparse descriptions dedicated to hardware and software designs. We present some examples of LFSRs generated using our algorithm to show the relevance of our approach.Comment: Submitted to IEEE-I

    A Coalgebraic Approach to Kleene Algebra with Tests

    Get PDF
    Kleene algebra with tests is an extension of Kleene algebra, the algebra of regular expressions, which can be used to reason about programs. We develop a coalgebraic theory of Kleene algebra with tests, along the lines of the coalgebraic theory of regular expressions based on deterministic automata. Since the known automata-theoretic presentation of Kleene algebra with tests does not lend itself to a coalgebraic theory, we define a new interpretation of Kleene algebra with tests expressions and a corresponding automata-theoretic presentation. One outcome of the theory is a coinductive proof principle, that can be used to establish equivalence of our Kleene algebra with tests expressions.Comment: 21 pages, 1 figure; preliminary version appeared in Proc. Workshop on Coalgebraic Methods in Computer Science (CMCS'03

    Normal-order reduction grammars

    Full text link
    We present an algorithm which, for given nn, generates an unambiguous regular tree grammar defining the set of combinatory logic terms, over the set {S,K}\{S,K\} of primitive combinators, requiring exactly nn normal-order reduction steps to normalize. As a consequence of Curry and Feys's standardization theorem, our reduction grammars form a complete syntactic characterization of normalizing combinatory logic terms. Using them, we provide a recursive method of constructing ordinary generating functions counting the number of SKS K-combinators reducing in nn normal-order reduction steps. Finally, we investigate the size of generated grammars, giving a primitive recursive upper bound

    Finite pseudo orbit expansions for spectral quantities of quantum graphs

    Full text link
    We investigate spectral quantities of quantum graphs by expanding them as sums over pseudo orbits, sets of periodic orbits. Only a finite collection of pseudo orbits which are irreducible and where the total number of bonds is less than or equal to the number of bonds of the graph appear, analogous to a cut off at half the Heisenberg time. The calculation simplifies previous approaches to pseudo orbit expansions on graphs. We formulate coefficients of the characteristic polynomial and derive a secular equation in terms of the irreducible pseudo orbits. From the secular equation, whose roots provide the graph spectrum, the zeta function is derived using the argument principle. The spectral zeta function enables quantities, such as the spectral determinant and vacuum energy, to be obtained directly as finite expansions over the set of short irreducible pseudo orbits.Comment: 23 pages, 4 figures, typos corrected, references added, vacuum energy calculation expande

    Measuring sets in infinite groups

    Full text link
    We are now witnessing a rapid growth of a new part of group theory which has become known as "statistical group theory". A typical result in this area would say something like ``a random element (or a tuple of elements) of a group G has a property P with probability p". The validity of a statement like that does, of course, heavily depend on how one defines probability on groups, or, equivalently, how one measures sets in a group (in particular, in a free group). We hope that new approaches to defining probabilities on groups outlined in this paper create, among other things, an appropriate framework for the study of the "average case" complexity of algorithms on groups.Comment: 22 page

    Synchronizing Automata on Quasi Eulerian Digraph

    Full text link
    In 1964 \v{C}ern\'{y} conjectured that each nn-state synchronizing automaton posesses a reset word of length at most (n−1)2(n-1)^2. From the other side the best known upper bound on the reset length (minimum length of reset words) is cubic in nn. Thus the main problem here is to prove quadratic (in nn) upper bounds. Since 1964, this problem has been solved for few special classes of \sa. One of this result is due to Kari \cite{Ka03} for automata with Eulerian digraphs. In this paper we introduce a new approach to prove quadratic upper bounds and explain it in terms of Markov chains and Perron-Frobenius theories. Using this approach we obtain a quadratic upper bound for a generalization of Eulerian automata.Comment: 8 pages, 1 figur
    • …
    corecore