9,880 research outputs found

    Global dynamics of a novel delayed logistic equation arising from cell biology

    Get PDF
    The delayed logistic equation (also known as Hutchinson's equation or Wright's equation) was originally introduced to explain oscillatory phenomena in ecological dynamics. While it motivated the development of a large number of mathematical tools in the study of nonlinear delay differential equations, it also received criticism from modellers because of the lack of a mechanistic biological derivation and interpretation. Here we propose a new delayed logistic equation, which has clear biological underpinning coming from cell population modelling. This nonlinear differential equation includes terms with discrete and distributed delays. The global dynamics is completely described, and it is proven that all feasible nontrivial solutions converge to the positive equilibrium. The main tools of the proof rely on persistence theory, comparison principles and an L2L^2-perturbation technique. Using local invariant manifolds, a unique heteroclinic orbit is constructed that connects the unstable zero and the stable positive equilibrium, and we show that these three complete orbits constitute the global attractor of the system. Despite global attractivity, the dynamics is not trivial as we can observe long-lasting transient oscillatory patterns of various shapes. We also discuss the biological implications of these findings and their relations to other logistic type models of growth with delays

    Dynamical Systems, Stability, and Chaos

    Full text link
    In this expository and resources chapter we review selected aspects of the mathematics of dynamical systems, stability, and chaos, within a historical framework that draws together two threads of its early development: celestial mechanics and control theory, and focussing on qualitative theory. From this perspective we show how concepts of stability enable us to classify dynamical equations and their solutions and connect the key issues of nonlinearity, bifurcation, control, and uncertainty that are common to time-dependent problems in natural and engineered systems. We discuss stability and bifurcations in three simple model problems, and conclude with a survey of recent extensions of stability theory to complex networks.Comment: 28 pages, 10 figures. 26/04/2007: The book title was changed at the last minute. No other changes have been made. Chapter 1 in: J.P. Denier and J.S. Frederiksen (editors), Frontiers in Turbulence and Coherent Structures. World Scientific Singapore 2007 (in press

    Asymptotic methods for delay equations.

    Get PDF
    Asymptotic methods for singularly perturbed delay differential equations are in many ways more challenging to implement than for ordinary differential equations. In this paper, four examples of delayed systems which occur in practical models are considered: the delayed recruitment equation, relaxation oscillations in stem cell control, the delayed logistic equation, and density wave oscillations in boilers, the last of these being a problem of concern in engineering two-phase flows. The ways in which asymptotic methods can be used vary from the straightforward to the perverse, and illustrate the general technical difficulties that delay equations provide for the central technique of the applied mathematician. © Springer 2006

    Qualitative analysis of some models of delay differential equations

    Get PDF
    This thesis concerns the study of the global dynamics of delay differential equations of the so-called production and destruction type, which find applications to the modelling of several phenomena in areas such as population growth dynamics, economics, cell production, etc. For instance, by applying tools coming from discrete dynamics, we provide sufficient conditions for the existence of globally attracting equilibria for families of scalar or multidimensional equations. Moreover, we extend some known results in the scalar non-autonomous case by the use of integral inequalities. Finally, the existence of periodic solutions is analysed in the general context of infinite delay, impulses and periodic coefficients

    Approximation Of Continuously Distributed Delay Differential Equations

    Get PDF
    We establish a theorem on the approximation of the solutions of delay differential equations with continuously distributed delay with solutions of delay differential equations with discrete delays. We present numerical simulations of the trajectories of discrete delay differential equations and the dependence of their behavior for various delay amounts. We further simulate continuously distributed delays by considering discrete approximation of the continuous distribution
    • …
    corecore