8,331 research outputs found

    Assumptions behind grammatical approaches to code-switching: when the blueprint is a red herring

    Get PDF
    Many of the so-called ‘grammars’ of code-switching are based on various underlying assumptions, e.g. that informal speech can be adequately or appropriately described in terms of ‘‘grammar’’; that deep, rather than surface, structures are involved in code-switching; that one ‘language’ is the ‘base’ or ‘matrix’; and that constraints derived from existing data are universal and predictive. We question these assumptions on several grounds. First, ‘grammar’ is arguably distinct from the processes driving speech production. Second, the role of grammar is mediated by the variable, poly-idiolectal repertoires of bilingual speakers. Third, in many instances of CS the notion of a ‘base’ system is either irrelevant, or fails to explain the facts. Fourth, sociolinguistic factors frequently override ‘grammatical’ factors, as evidence from the same language pairs in different settings has shown. No principles proposed to date account for all the facts, and it seems unlikely that ‘grammar’, as conventionally conceived, can provide definitive answers. We conclude that rather than seeking universal, predictive grammatical rules, research on CS should focus on the variability of bilingual grammars

    Implicit learning of recursive context-free grammars

    Get PDF
    Context-free grammars are fundamental for the description of linguistic syntax. However, most artificial grammar learning experiments have explored learning of simpler finite-state grammars, while studies exploring context-free grammars have not assessed awareness and implicitness. This paper explores the implicit learning of context-free grammars employing features of hierarchical organization, recursive embedding and long-distance dependencies. The grammars also featured the distinction between left- and right-branching structures, as well as between centre- and tail-embedding, both distinctions found in natural languages. People acquired unconscious knowledge of relations between grammatical classes even for dependencies over long distances, in ways that went beyond learning simpler relations (e.g. n-grams) between individual words. The structural distinctions drawn from linguistics also proved important as performance was greater for tail-embedding than centre-embedding structures. The results suggest the plausibility of implicit learning of complex context-free structures, which model some features of natural languages. They support the relevance of artificial grammar learning for probing mechanisms of language learning and challenge existing theories and computational models of implicit learning

    Book Reviews

    Get PDF

    Parsing With Lexicalized Tree Adjoining Grammar

    Get PDF
    Most current linguistic theories give lexical accounts of several phenomena that used to be considered purely syntactic. The information put in the lexicon is thereby increased in both amount and complexity: see, for example, lexical rules in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar, Klein, Pullum and Sag, 1985), HPSG (Pollard and Sag, 1987), Combinatory Categorial Grammars (Steedman, 1987), Karttunen\u27s version of Categorial Grammar (Karttunen 1986, 1988), some versions of GB theory (Chomsky 1981), and Lexicon-Grammars (Gross 1984). We would like to take into account this fact while defining a formalism. We therefore explore the view that syntactical rules are not separated from lexical items. We say that a grammar is lexicalized (Schabes, AbeilK and Joshi, 1988) if it consists of: (1) a finite set of structures each associated with lexical items; each lexical item will be called the anchor of the corresponding structure; the structures define the domain of locality over which constraints are specified; (2) an operation or operations for composing the structures. The notion of anchor is closely related to the word associated with a functor-argument category in Categorial Grammars. Categorial Grammar (as used for example by Steedman, 1987) are \u27lexicalized\u27 according to our definition since each basic category has a lexical item associated with it

    Students´ language in computer-assisted tutoring of mathematical proofs

    Get PDF
    Truth and proof are central to mathematics. Proving (or disproving) seemingly simple statements often turns out to be one of the hardest mathematical tasks. Yet, doing proofs is rarely taught in the classroom. Studies on cognitive difficulties in learning to do proofs have shown that pupils and students not only often do not understand or cannot apply basic formal reasoning techniques and do not know how to use formal mathematical language, but, at a far more fundamental level, they also do not understand what it means to prove a statement or even do not see the purpose of proof at all. Since insight into the importance of proof and doing proofs as such cannot be learnt other than by practice, learning support through individualised tutoring is in demand. This volume presents a part of an interdisciplinary project, set at the intersection of pedagogical science, artificial intelligence, and (computational) linguistics, which investigated issues involved in provisioning computer-based tutoring of mathematical proofs through dialogue in natural language. The ultimate goal in this context, addressing the above-mentioned need for learning support, is to build intelligent automated tutoring systems for mathematical proofs. The research presented here has been focused on the language that students use while interacting with such a system: its linguistic propeties and computational modelling. Contribution is made at three levels: first, an analysis of language phenomena found in students´ input to a (simulated) proof tutoring system is conducted and the variety of students´ verbalisations is quantitatively assessed, second, a general computational processing strategy for informal mathematical language and methods of modelling prominent language phenomena are proposed, and third, the prospects for natural language as an input modality for proof tutoring systems is evaluated based on collected corpora

    A note on the strong and weak generative powers of formal systems

    Get PDF
    AbstractThis paper is a note on some relationships between the strong and weak generative powers of formal systems, in particular, from the point of view of squeezing more strong power out of a formal system without increasing its weak generative power. We will comment on some old and new results from this perspective. Our main goal of this note is to comment on the strong generative power of context-free grammars, lexicalized tree-adjoining grammars (and some of their variants) and Lambek grammars, especially in the context of crossing dependencies, in view of the recent work of Tiede (Ph.D. Dissertation, Indiana University, Bloomington, 1999)

    CLiFF Notes: Research In Natural Language Processing at the University of Pennsylvania

    Get PDF
    CLIFF is the Computational Linguists\u27 Feedback Forum. We are a group of students and faculty who gather once a week to hear a presentation and discuss work currently in progress. The \u27feedback\u27 in the group\u27s name is important: we are interested in sharing ideas, in discussing ongoing research, and in bringing together work done by the students and faculty in Computer Science and other departments. However, there are only so many presentations which we can have in a year. We felt that it would be beneficial to have a report which would have, in one place, short descriptions of the work in Natural Language Processing at the University of Pennsylvania. This report then, is a collection of abstracts from both faculty and graduate students, in Computer Science, Psychology and Linguistics. We want to stress the close ties between these groups, as one of the things that we pride ourselves on here at Penn is the communication among different departments and the inter-departmental work. Rather than try to summarize the varied work currently underway at Penn, we suggest reading the abstracts to see how the students and faculty themselves describe their work. The report illustrates the diversity of interests among the researchers here, as well as explaining the areas of common interest. In addition, since it was our intent to put together a document that would be useful both inside and outside of the university, we hope that this report will explain to everyone some of what we are about
    corecore