26,053 research outputs found

    Introducing Dynamic Behavior in Amalgamated Knowledge Bases

    Full text link
    The problem of integrating knowledge from multiple and heterogeneous sources is a fundamental issue in current information systems. In order to cope with this problem, the concept of mediator has been introduced as a software component providing intermediate services, linking data resources and application programs, and making transparent the heterogeneity of the underlying systems. In designing a mediator architecture, we believe that an important aspect is the definition of a formal framework by which one is able to model integration according to a declarative style. To this purpose, the use of a logical approach seems very promising. Another important aspect is the ability to model both static integration aspects, concerning query execution, and dynamic ones, concerning data updates and their propagation among the various data sources. Unfortunately, as far as we know, no formal proposals for logically modeling mediator architectures both from a static and dynamic point of view have already been developed. In this paper, we extend the framework for amalgamated knowledge bases, presented by Subrahmanian, to deal with dynamic aspects. The language we propose is based on the Active U-Datalog language, and extends it with annotated logic and amalgamation concepts. We model the sources of information and the mediator (also called supervisor) as Active U-Datalog deductive databases, thus modeling queries, transactions, and active rules, interpreted according to the PARK semantics. By using active rules, the system can efficiently perform update propagation among different databases. The result is a logical environment, integrating active and deductive rules, to perform queries and update propagation in an heterogeneous mediated framework.Comment: Other Keywords: Deductive databases; Heterogeneous databases; Active rules; Update

    Dynamic Semantics

    Get PDF
    This article focuses on foundational issues in dynamic and static semantics, specifically on what is conceptually at stake between the dynamic framework and the truth-conditional framework, and consequently what kinds of evidence support each framework. The article examines two questions. First, it explores the consequences of taking the proposition as central semantic notion as characteristic of static semantics, and argues that this is not as limiting in accounting for discourse dynamics as many think. Specifically, it explores what it means for a static semantics to incorporate the notion of context change potential in a dynamic pragmatics and denies that this conception of static semantics requires that all updates to the context be eliminative and distributive. Second, it argues that the central difference between the two frameworks is whether semantics or pragmatics accounts for dynamics, and explores what this means for the oft-heard claim that dynamic semantics blurs the semantics/pragmatics distinction

    Incremental Consistency Guarantees for Replicated Objects

    Get PDF
    Programming with replicated objects is difficult. Developers must face the fundamental trade-off between consistency and performance head on, while struggling with the complexity of distributed storage stacks. We introduce Correctables, a novel abstraction that hides most of this complexity, allowing developers to focus on the task of balancing consistency and performance. To aid developers with this task, Correctables provide incremental consistency guarantees, which capture successive refinements on the result of an ongoing operation on a replicated object. In short, applications receive both a preliminary---fast, possibly inconsistent---result, as well as a final---consistent---result that arrives later. We show how to leverage incremental consistency guarantees by speculating on preliminary values, trading throughput and bandwidth for improved latency. We experiment with two popular storage systems (Cassandra and ZooKeeper) and three applications: a Twissandra-based microblogging service, an ad serving system, and a ticket selling system. Our evaluation on the Amazon EC2 platform with YCSB workloads A, B, and C shows that we can reduce the latency of strongly consistent operations by up to 40% (from 100ms to 60ms) at little cost (10% bandwidth increase, 6% throughput drop) in the ad system. Even if the preliminary result is frequently inconsistent (25% of accesses), incremental consistency incurs a bandwidth overhead of only 27%.Comment: 16 total pages, 12 figures. OSDI'16 (to appear

    Theorem proving support in programming language semantics

    Get PDF
    We describe several views of the semantics of a simple programming language as formal documents in the calculus of inductive constructions that can be verified by the Coq proof system. Covered aspects are natural semantics, denotational semantics, axiomatic semantics, and abstract interpretation. Descriptions as recursive functions are also provided whenever suitable, thus yielding a a verification condition generator and a static analyser that can be run inside the theorem prover for use in reflective proofs. Extraction of an interpreter from the denotational semantics is also described. All different aspects are formally proved sound with respect to the natural semantics specification.Comment: Propos\'e pour publication dans l'ouvrage \`a la m\'emoire de Gilles Kah

    On Properties of Update Sequences Based on Causal Rejection

    Full text link
    We consider an approach to update nonmonotonic knowledge bases represented as extended logic programs under answer set semantics. New information is incorporated into the current knowledge base subject to a causal rejection principle enforcing that, in case of conflicts, more recent rules are preferred and older rules are overridden. Such a rejection principle is also exploited in other approaches to update logic programs, e.g., in dynamic logic programming by Alferes et al. We give a thorough analysis of properties of our approach, to get a better understanding of the causal rejection principle. We review postulates for update and revision operators from the area of theory change and nonmonotonic reasoning, and some new properties are considered as well. We then consider refinements of our semantics which incorporate a notion of minimality of change. As well, we investigate the relationship to other approaches, showing that our approach is semantically equivalent to inheritance programs by Buccafurri et al. and that it coincides with certain classes of dynamic logic programs, for which we provide characterizations in terms of graph conditions. Therefore, most of our results about properties of causal rejection principle apply to these approaches as well. Finally, we deal with computational complexity of our approach, and outline how the update semantics and its refinements can be implemented on top of existing logic programming engines.Comment: 59 pages, 2 figures, 3 tables, to be published in "Theory and Practice of Logic Programming
    • …
    corecore