42,243 research outputs found

    A Nearly Optimal Lower Bound on the Approximate Degree of AC0^0

    Full text link
    The approximate degree of a Boolean function f ⁣:{1,1}n{1,1}f \colon \{-1, 1\}^n \rightarrow \{-1, 1\} is the least degree of a real polynomial that approximates ff pointwise to error at most 1/31/3. We introduce a generic method for increasing the approximate degree of a given function, while preserving its computability by constant-depth circuits. Specifically, we show how to transform any Boolean function ff with approximate degree dd into a function FF on O(npolylog(n))O(n \cdot \operatorname{polylog}(n)) variables with approximate degree at least D=Ω(n1/3d2/3)D = \Omega(n^{1/3} \cdot d^{2/3}). In particular, if d=n1Ω(1)d= n^{1-\Omega(1)}, then DD is polynomially larger than dd. Moreover, if ff is computed by a polynomial-size Boolean circuit of constant depth, then so is FF. By recursively applying our transformation, for any constant δ>0\delta > 0 we exhibit an AC0^0 function of approximate degree Ω(n1δ)\Omega(n^{1-\delta}). This improves over the best previous lower bound of Ω(n2/3)\Omega(n^{2/3}) due to Aaronson and Shi (J. ACM 2004), and nearly matches the trivial upper bound of nn that holds for any function. Our lower bounds also apply to (quasipolynomial-size) DNFs of polylogarithmic width. We describe several applications of these results. We give: * For any constant δ>0\delta > 0, an Ω(n1δ)\Omega(n^{1-\delta}) lower bound on the quantum communication complexity of a function in AC0^0. * A Boolean function ff with approximate degree at least C(f)2o(1)C(f)^{2-o(1)}, where C(f)C(f) is the certificate complexity of ff. This separation is optimal up to the o(1)o(1) term in the exponent. * Improved secret sharing schemes with reconstruction procedures in AC0^0.Comment: 40 pages, 1 figur

    A composition theorem for parity kill number

    Full text link
    In this work, we study the parity complexity measures Cmin[f]{\mathsf{C}^{\oplus}_{\min}}[f] and DT[f]{\mathsf{DT^{\oplus}}}[f]. Cmin[f]{\mathsf{C}^{\oplus}_{\min}}[f] is the \emph{parity kill number} of ff, the fewest number of parities on the input variables one has to fix in order to "kill" ff, i.e. to make it constant. DT[f]{\mathsf{DT^{\oplus}}}[f] is the depth of the shortest \emph{parity decision tree} which computes ff. These complexity measures have in recent years become increasingly important in the fields of communication complexity \cite{ZS09, MO09, ZS10, TWXZ13} and pseudorandomness \cite{BK12, Sha11, CT13}. Our main result is a composition theorem for Cmin{\mathsf{C}^{\oplus}_{\min}}. The kk-th power of ff, denoted fkf^{\circ k}, is the function which results from composing ff with itself kk times. We prove that if ff is not a parity function, then Cmin[fk]Ω(Cmin[f]k).{\mathsf{C}^{\oplus}_{\min}}[f^{\circ k}] \geq \Omega({\mathsf{C}_{\min}}[f]^{k}). In other words, the parity kill number of ff is essentially supermultiplicative in the \emph{normal} kill number of ff (also known as the minimum certificate complexity). As an application of our composition theorem, we show lower bounds on the parity complexity measures of Sortk\mathsf{Sort}^{\circ k} and HIk\mathsf{HI}^{\circ k}. Here Sort\mathsf{Sort} is the sort function due to Ambainis \cite{Amb06}, and HI\mathsf{HI} is Kushilevitz's hemi-icosahedron function \cite{NW95}. In doing so, we disprove a conjecture of Montanaro and Osborne \cite{MO09} which had applications to communication complexity and computational learning theory. In addition, we give new lower bounds for conjectures of \cite{MO09,ZS10} and \cite{TWXZ13}

    The Vampire and the FOOL

    Full text link
    This paper presents new features recently implemented in the theorem prover Vampire, namely support for first-order logic with a first class boolean sort (FOOL) and polymorphic arrays. In addition to having a first class boolean sort, FOOL also contains if-then-else and let-in expressions. We argue that presented extensions facilitate reasoning-based program analysis, both by increasing the expressivity of first-order reasoners and by gains in efficiency

    Cumulants and convolutions via Abel polynomials

    Get PDF
    We provide an unifying polynomial expression giving moments in terms of cumulants, and viceversa, holding in the classical, boolean and free setting. This is done by using a symbolic treatment of Abel polynomials. As a by-product, we show that in the free cumulant theory the volume polynomial of Pitman and Stanley plays the role of the complete Bell exponential polynomial in the classical theory. Moreover via generalized Abel polynomials we construct a new class of cumulants, including the classical, boolean and free ones, and the convolutions linearized by them. Finally, via an umbral Fourier transform, we state a explicit connection between boolean and free convolution
    corecore