1,788 research outputs found

    Obstacle alert and collision avoidance system development for UAVs with Pixhawk flight controller

    Get PDF
    In recent years, the unmanned aerial vehicles sector has been characterized by its sharp growth, spreading its line of applications and becoming one of the cutting edge technologies in the world. However, this exponential advancement would have been even more extreme but for the restrictive existing legislation that limits its operations. That constraints imposed to drone operations are not legislated in vain. Specially in populated areas, flying drones is a dangerous service that entails risks for the safety of the population. Useless have been the attempts of many major online selling companies to make use of unmanned aerial vehicles serving as dealers of parcels. Further technology needs still to be implemented, for guarantying standards levels of safety in urban zones. This thesis aims to contribute to this required development of drone technology by proposing a preliminary collision avoidance system for unmanned aerial vehi- cles. The project involves assembling a flight-capable quadcopter from scratch and implementing the collision avoidance as an additional subsystem. To that end, a set of ultrasonic range finders are located around the quadcopter. Their acquired raw data is processed in an auxiliary arduino microcontroller board that send tra- jectory corrections to the flight controller of the quadcopter based on the distance information. As a result, a concept proof of an autonomous collision avoidance system is integrated into an unmanned aerial vehicle system. Results are obtained and consecutively analyzed based on ground and flight tests. For that purpose, the flight capabilities of the built quadcopter are proved, and aftewards, the collision avoidance is tested. Overall, the collision avoidance system e ectiveness was achieved. The collision avoidance work principle consisted on warding off from obstacles when detected. Major faced problems are related to stability recover after the collision is avoided. That problem was solved by proving different flight modes, but that issue needs future work to make the collision avoidance more reliable.IngenierĂ­a Aeroespacia

    Embedded System Design of Robot Control Architectures for Unmanned Agricultural Ground Vehicles

    Get PDF
    Engineering technology has matured to the extent where accompanying methods for unmanned field management is now becoming a technologically achievable and economically viable solution to agricultural tasks that have been traditionally performed by humans or human operated machines. Additionally, the rapidly increasing world population and the daunting burden it places on farmers in regards to the food production and crop yield demands, only makes such advancements in the agriculture industry all the more imperative. Consequently, the sector is beginning to observe a noticeable shift, where there exist a number of scalable infrastructural changes that are in the process of slowly being implemented onto the modular machinery design of agricultural equipment. This work is being pursued in effort to provide firmware descriptions and hardware architectures that integrate cutting edge technology onto the embedded control architectures of agricultural machinery designs to assist in achieving the end goal of complete and reliable unmanned agricultural automation. In this thesis, various types of autonomous control algorithms integrated with obstacle avoidance or guidance schemes, were implemented onto controller area network (CAN) based distributive real-time systems (DRTSs) in form of the two unmanned agricultural ground vehicles (UAGVs). Both vehicles are tailored to different applications in the agriculture domain as they both leverage state-of-the-art sensors and modules to attain the end objective of complete autonomy to allow for the automation of various types of agricultural related tasks. The further development of the embedded system design of these machines called for the developed firmware and hardware to be implemented onto both an event triggered and time triggered CAN bus control architecture as each robot employed its own separate embedded control scheme. For the first UAGV, a multiple GPS waypoint navigation scheme is derived, developed, and evaluated to yield a fully controllable GPS-driven vehicle. Additionally, obstacle detection and avoidance capabilities were also implemented onto the vehicle to serve as a safety layer for the robot control architecture, giving the ground vehicle the ability to reliability detect and navigate around any obstacles that may happen to be in the vicinity of the assigned path. The second UAGV was a smaller robot designed for field navigation applications. For this robot, a fully autonomous sensor based algorithm was proposed and implemented onto the machine. It is demonstrated that the utilization and implementation of laser, LIDAR, and IMU sensors onto a mobile robot platform allowed for the realization of a fully autonomous non-GPS sensor based algorithm to be employed for field navigation. The developed algorithm can serve as a viable solution for the application of microclimate sensing in a field. Advisors: A. John Boye and Santosh Pitl

    Embedded System Design of Robot Control Architectures for Unmanned Agricultural Ground Vehicles

    Get PDF
    Engineering technology has matured to the extent where accompanying methods for unmanned field management is now becoming a technologically achievable and economically viable solution to agricultural tasks that have been traditionally performed by humans or human operated machines. Additionally, the rapidly increasing world population and the daunting burden it places on farmers in regards to the food production and crop yield demands, only makes such advancements in the agriculture industry all the more imperative. Consequently, the sector is beginning to observe a noticeable shift, where there exist a number of scalable infrastructural changes that are in the process of slowly being implemented onto the modular machinery design of agricultural equipment. This work is being pursued in effort to provide firmware descriptions and hardware architectures that integrate cutting edge technology onto the embedded control architectures of agricultural machinery designs to assist in achieving the end goal of complete and reliable unmanned agricultural automation. In this thesis, various types of autonomous control algorithms integrated with obstacle avoidance or guidance schemes, were implemented onto controller area network (CAN) based distributive real-time systems (DRTSs) in form of the two unmanned agricultural ground vehicles (UAGVs). Both vehicles are tailored to different applications in the agriculture domain as they both leverage state-of-the-art sensors and modules to attain the end objective of complete autonomy to allow for the automation of various types of agricultural related tasks. The further development of the embedded system design of these machines called for the developed firmware and hardware to be implemented onto both an event triggered and time triggered CAN bus control architecture as each robot employed its own separate embedded control scheme. For the first UAGV, a multiple GPS waypoint navigation scheme is derived, developed, and evaluated to yield a fully controllable GPS-driven vehicle. Additionally, obstacle detection and avoidance capabilities were also implemented onto the vehicle to serve as a safety layer for the robot control architecture, giving the ground vehicle the ability to reliability detect and navigate around any obstacles that may happen to be in the vicinity of the assigned path. The second UAGV was a smaller robot designed for field navigation applications. For this robot, a fully autonomous sensor based algorithm was proposed and implemented onto the machine. It is demonstrated that the utilization and implementation of laser, LIDAR, and IMU sensors onto a mobile robot platform allowed for the realization of a fully autonomous non-GPS sensor based algorithm to be employed for field navigation. The developed algorithm can serve as a viable solution for the application of microclimate sensing in a field. Advisors: A. John Boye and Santosh Pitl

    Drone Obstacle Avoidance and Navigation Using Artificial Intelligence

    Get PDF
    This thesis presents an implementation and integration of a robust obstacle avoidance and navigation module with ardupilot. It explores the problems in the current solution of obstacle avoidance and tries to mitigate it with a new design. With the recent innovation in artificial intelligence, it also explores opportunities to enable and improve the functionalities of obstacle avoidance and navigation using AI techniques. Understanding different types of sensors for both navigation and obstacle avoidance is required for the implementation of the design and a study of the same is presented as a background. A research on an autonomous car is done for better understanding autonomy and learning how it is solving the problem of obstacle avoidance and navigation. The implementation part of the thesis is focused on the design of a robust obstacle avoidance module and is tested with obstacle avoidance sensors such as Garmin lidar and Realsense r200. Image segmentation is used to verify the possibility of using the convolutional neural network for better understanding the nature of obstacles. Similarly, the end to end control with a single camera input using a deep neural network is used for verifying the possibility of using AI for navigation. In the end, a robust obstacle avoidance library is developed and tested both in the simulator and real drone. Image segmentation is implemented, deployed and tested. A possibility of an end to end control is also verified by obtaining a proof of concept

    A Study on Recent Developments and Issues with Obstacle Detection Systems for Automated Vehicles

    Get PDF
    This paper reviews current developments and discusses some critical issues with obstacle detection systems for automated vehicles. The concept of autonomous driving is the driver towards future mobility. Obstacle detection systems play a crucial role in implementing and deploying autonomous driving on our roads and city streets. The current review looks at technology and existing systems for obstacle detection. Specifically, we look at the performance of LIDAR, RADAR, vision cameras, ultrasonic sensors, and IR and review their capabilities and behaviour in a number of different situations: during daytime, at night, in extreme weather conditions, in urban areas, in the presence of smooths surfaces, in situations where emergency service vehicles need to be detected and recognised, and in situations where potholes need to be observed and measured. It is suggested that combining different technologies for obstacle detection gives a more accurate representation of the driving environment. In particular, when looking at technological solutions for obstacle detection in extreme weather conditions (rain, snow, fog), and in some specific situations in urban areas (shadows, reflections, potholes, insufficient illumination), although already quite advanced, the current developments appear to be not sophisticated enough to guarantee 100% precision and accuracy, hence further valiant effort is needed

    An Incremental Navigation Localization Methodology for Application to Semi-Autonomous Mobile Robotic Platforms to Assist Individuals Having Severe Motor Disabilities.

    Get PDF
    In the present work, the author explores the issues surrounding the design and development of an intelligent wheelchair platform incorporating the semi-autonomous system paradigm, to meet the needs of individuals with severe motor disabilities. The author presents a discussion of the problems of navigation that must be solved before any system of this type can be instantiated, and enumerates the general design issues that must be addressed by the designers of systems of this type. This discussion includes reviews of various methodologies that have been proposed as solutions to the problems considered. Next, the author introduces a new navigation method, called Incremental Signature Recognition (ISR), for use by semi-autonomous systems in structured environments. This method is based on the recognition, recording, and tracking of environmental discontinuities: sensor reported anomalies in measured environmental parameters. The author then proposes a robust, redundant, dynamic, self-diagnosing sensing methodology for detecting and compensating for hidden failures of single sensors and sensor idiosyncrasies. This technique is optimized for the detection of spatial discontinuity anomalies. Finally, the author gives details of an effort to realize a prototype ISR based system, along with insights into the various implementation choices made

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed
    • …
    corecore