6,224 research outputs found

    Electromagnetic Wave Propagation in Circular Tunnels

    Get PDF

    Phase dynamics of inductively coupled intrinsic Josephson junctions and terahertz electromagnetic radiation

    Full text link
    The Josephson effects associated with quantum tunneling of Cooper pairs manifest as nonlinear relations between the superconductivity phase difference and the bias current and voltage. Many novel phenomena appear, such as Shapiro steps in dc cuurent-voltage (IV) characteristics of a Josephson junction under microwave shining, which can be used as a voltage standard. Inversely, the Josephson effects provide a unique way to generate high-frequency electromagnetic (EM) radiation by dc bias voltage. The discovery of cuprate high-Tc superconductors accelerated the effort to develop novel source of EM waves based on a stack of atomically dense-packed intrinsic Josephson junctions (IJJs), since the large superconductivity gap covers the whole terahertz frequency band. Very recently, strong and coherent terahertz radiations have been successfully generated from a mesa structure of Bi2Sr2CaCu2O8+δ\rm{Bi_2Sr_2CaCu_2O_{8+\delta}} single crystal which works both as the source of energy gain and as the cavity for resonance. It is then found theoretically that, due to huge inductive coupling of IJJs produced by the nanometer junction separation and the large London penetration depth of order of μm\rm{\mu m} of the material, a novel dynamic state is stabilized in the coupled sine-Gordon system, in which ±π\pm \pi kinks in phase differences are developed responding to the standing wave of Josephson plasma and are stacked alternatively in the c-axis. This novel solution of the inductively coupled sine-Gordon equations captures the important features of experimental observations. The theory predicts an optimal radiation power larger than the one available to date by orders of magnitude, and thus suggests the technological relevance of the phenomena.Comment: review article (69 pages, 30 figures

    Electromagnetic propagation through non-dissipative and dissipative barriers : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Physics at Massey University, Palmerston North, New Zealand

    Get PDF
    A Matlab simulation was developed to help visualise and investigate electromagnetic tunnelling through particular non-dissipative and dissipative barriers within a waveguide. The theory behind the simulation is based on a transmission line model that accurately predicts experimental results and is shown to be equivalent to previous numerical and quantum tunnelling models. A few useful speeds referring to electromagnetic waves have been defined and utilised to calculate die speeds at which different incident time signals penetrate electromagnetic barriers. Due to bandwidth restrictions, the created incident time signals had wavepacket properties. The importance of resampling an oscillating signal at the appropriate frequency to avoid aliasing has been recognised. The definition and creation of matched signals that can penetrate long barriers yet remain a single pulse have been investigated. Such signals will have no practical application since the attenuation will deem the transmitted signals immeasurable. However, the speeds through these larger barrier lengths will have a smaller uncertainty since the time delays are longer. Most of the signal distortion depends only on the barrier interfaces rather than the barrier length. Penetration through dissipative barriers gives speeds below the vacuum speed of light for all barrier lengths investigated. Faster than light speeds are however predicted for penetration through non-dissipative barriers greater than about 4cm

    Experimental investigation of V2I radio channel in an arched tunnel

    Get PDF
    This paper describes the results of the experimental radio channel sounding campaign performed in an arched road tunnel in Le Havre, France. The co-polar and cross-polar channels measurements are carried out in the closed side lane, while the lane along the center of the tunnel is open to traffic. We investigate the channel characteristics in terms of: path loss, fading distribution, polarization power ratios and delay spread. All these parameters are essential for the deployment of vehicular communication systems inside tunnels. Our results indicate that, while the H-polar channel gain attenuates slower than the V-polar channel due to the geometry of the tunnel, the mean delay spread of the H-polar channel is larger than that of the V-polar channel

    Modelling of radio wave propagation using Finite Element Analysis.

    Get PDF
    Fourth generation (4G) wireless communication systems are intended to support high data rates which requires careful and accurate modelling of the radio environment. In this thesis, for the first time finite clement based accurate and computationally efficient models of wave propagation in different outdoor and indoor environments has been developed. Three different environments were considered: the troposphere, vegetation and tunnels and wave propagation in these environments were modelled using finite element analysis. Use of finite elements in wave propagation modelling is a novel idea although many propagation models and approaches were used in past. Coverage diagrams, path loss contours and power levels were calculated using developed models in the troposphere, vegetation and tunnels. Results obtained were compared with commercially available software Advanced Refractive Effects Prediction Software (AREPS) to validate the accuracy of the developed approach and it is shown that results were accurate with an accuracy of 3dB. The developed models were very flexible in handling complex geometries and similar analysis can be easily extended to other environments. A fully vectored finite element base propagation model was developed for straight and curved tunnels. An optimum range of values of different electrical parameters for tunnels of different shapes has been derived. The thesis delivered a novel approach to modelling radio channels that provided a fast and accurate solution of radio wave propagation in realistic environments. The results of this thesis will have a great impact in modelling and characterisation of future wireless communication systems

    Time-Domain Electromagnetic Wave Propagation in Confined Environments

    Get PDF
    International audienceConfined environments like tunnels are electrically large structures for guided wave propagation. They can have arbitrary cross sections, and the design and optimization of antenna for communication system requires the knowledge of a "full-wave" solution in nearby zones. Current models based on asymptotic approaches do not describe adequately the wave propagation under the above conditions. In addition, a complete "full-wave" analysis of the tunnel propagation performances is not feasible in terms of computer expenditure. After a survey of the most commonly used techniques for propagation in tunnels, some investigation regarding an appropriate approach to find the fields is proposed. It is based on a modal decomposition of the wave propagation that allows an optimization of the coupling with the antenna. To find the mode characteristic for arbitrary cross section, a full-wave method, namely, the transmission-line matrix (TLM), is modified to a so-called 2.5-dimensional TLM algorithm and presented in details. This approach is validated for a canonical structure. Then, it is applied to study the wave propagation in a realistic rectangular tunnel. The concept of surface impedance boundary condition (SIBC) is introduced to reduce the TLM computational domain and model the tunnel walls that can be considered as lossy dielectric. Results show that guided structures with lossy dielectric walls of arbitrary cross section can be studied with this approach

    Wave Propagation

    Get PDF
    A wave is one of the basic physics phenomena observed by mankind since ancient time. The wave is also one of the most-studied physics phenomena that can be well described by mathematics. The study may be the best illustration of what is “science”, which approximates the laws of nature by using human defined symbols, operators, and languages. Having a good understanding of waves and wave propagation can help us to improve the quality of life and provide a pathway for future explorations of the nature and universe. This book introduces some exciting applications and theories to those who have general interests in waves and wave propagations, and provides insights and references to those who are specialized in the areas presented in the book

    Prof. James R. wait and mining production technology--an appreciation

    Get PDF
    Journal ArticleProf. James R. Wait examined electromagnetic (EM) wave propagation in many situations of interest to mining production, including propagation in tunnels, propagation along extended conductors such as cables and drill stems, and propagation in coal seams. This work remains relevant, both to the mining engineer interested in the EM environment of an operating mine and to the electrical engineer interested in verifying new computational techniques and in extending the scope of EM technology in mining production. Late work in EM focusing in a geological environment is relevant to "next generation" geophysical monitoring equipment
    • …
    corecore