987 research outputs found

    UHF band Radio Wave Propagation Mechanism in Forested Environments for Wireless Communication Systems

    Get PDF
    Radio frequency propagation is the mechanism of the transfer of energy or information at radio frequencies from one point, a transmitter, to another, a receiver. The energy radiated by a transmitter may take several paths before it is received. The path to be taken by radio wave depends on certain factors, such as: frequency, antenna type and height, atmospheric conditions and terrain. In this research work, UHF broadcast signal strength measurements were taken for both wet season (trees in leafs) and dry season (trees relatively out of leaf) in Akure-Ilara route of Ondo state, Nigeria and the result obtained were validated against the theoretical estimations. However, in the wet season, there were more attenuation of signal compared to dry season and signal degradation is a function of leaf density. The lower the leaf density, the better the signal received. It is thereby required, in wet season more power is expected to be pumped out from the transmitter in order to cover the targeted areas. Keywords: Radio wave, Forest, Measurements, Signal strength, UHF, Akure-Ilar

    Measured pedestrian movement and bodyworn terminal effects for the indoor channel at 5.2 GHz

    Get PDF
    [Summary]: Human body effects such as antenna-body interaction and scattering caused by pedestrian movement are important indoor radio propagation phenomena at microwave frequencies. This paper reports measurements and statistical analysis of the indoor narrowband propagation channel at 5.2 GHz for two scenarios: a fixed line-of-sight (LOS) link perturbed by pedestrian movement and a mobile link incorporating a moving bodyworn terminal. Two indoor environments were considered for both types of measurements: an 18 m long corridor and a 42 m2 office. The fixed-link results show that the statistical distribution of the received envelope was dependent on the number of pedestrians present. However, fading was slower than expected, with an average fade duration of more than 100 ms for a Doppler frequency of 8.67 Hz. For the bodyworn terminal, mean received power values were dependent on whether or not the user's body obstructed the LOS. For example, in the corridor the average non-line-of-sight (NLOS) pathloss was 5.4 dB greater than with LO

    Propagation modelling and measurements in a populated indoor environment at 5.2 GHz

    Get PDF
    There are a number of significant radiowave propagation phenomena present in the populated indoor environment, including multipath fading and human body effects. The latter can be divided into shadowing and scattering caused by pedestrian movement, and antenna-body interaction with bodyworn or hand portable terminals [1]. Human occupants within indoor environments are not always stationary and their movement will lead to temporal channel variations that can strongly affect the quality of indoor wireless communication systems. Hence, populated environments remain a major challenge for wireless local area networks (WLAN) and other indoor communication systems. Therefore, it is important to develop an understanding of the potential and limitations of indoor radiowave propagation at key frequencies of interest, such as the 5.2 GHz band employed by commercial wireless LAN standards such as IEEE 802.11a and HiperLAN 2. Although several indoor wireless models have been proposed in the literature, these temporal variations have not yet been thoroughly investigated. Therefore, we have made an important contribution to the area by conducting a systematic study of the problem, including a propagation measurement campaign and statistical channel characterization of human body effects on line-of-sight indoor propagation at 5.2 GHz. Measurements were performed in the everyday environment of a 7.2 m wide University hallway to determine the statistical characteristics of the 5.2 GHz channel for a fixed, transverse line-of-sight (LOS) link perturbed by pedestrian movement. Data were acquired at hours of relatively high pedestrian activity, between 12.00 and 14.00. The location was chosen as a typical indoor wireless system environment that had sufficient channel variability to permit a valid statistical analysis. The paper compares the first and second order statistics of the empirical signals with the Gaussian-derived distributions commonly used in wireless communications. The analysis shows that, as the number of pedestrians within the measurement location increases, the Ricean K-factor that best fits the Cumulative Distribution Function (CDF) of the empirical data tends to decrease proportionally, ranging from K=7 with 1 pedestrian to K=0 with 4 pedestrians. These results are consistent with previous results obtained for controlled measurement scenarios using a fixed link at 5.2 GHz in [2], where the K factor reduced as the number of pedestrians within a controlled measurement area increased. Level crossing rate results were Rice distributed, considering a maximum Doppler frequency of 8.67 Hz. While average fade duration results were significantly higher than theoretically computed Rice and Rayleigh, due to the fades caused by pedestrians. A novel statistical model that accurately describes the 5.2 GHz channel in the considered indoor environment is proposed. For the first time, the received envelope CDF is explicitly described in terms of a quantitative measurement of pedestrian traffic within the indoor environment. The model provides an insight into the prediction of human body shadowing effects for indoor channels at 5.2 GHz

    Time domain analysis of switching transient fields in high voltage substations

    Get PDF
    Switching operations of circuit breakers and disconnect switches generate transient currents propagating along the substation busbars. At the moment of switching, the busbars temporarily acts as antennae radiating transient electromagnetic fields within the substations. The radiated fields may interfere and disrupt normal operations of electronic equipment used within the substation for measurement, control and communication purposes. Hence there is the need to fully characterise the substation electromagnetic environment as early as the design stage of substation planning and operation to ensure safe operations of the electronic equipment. This paper deals with the computation of transient electromagnetic fields due to switching within a high voltage air-insulated substation (AIS) using the finite difference time domain (FDTD) metho

    Evaluation of indoor penetration loss and floor loss for a DVB-H signal at 514 MHz

    Get PDF
    In this paper, indoor penetration loss and floor loss for a DVB-H signal at 514 MHz retransmitted by a gap filler are investigated. Measurements in 14 different houses (detached houses, semidetached houses, terraced houses and apartments) and 121 rooms have been performed for three different radiated power levels. Rooms have been categorized according to their location with respect to the gap filler (same room, adjacent rooms, non-adjacent rooms, other floors, and outdoor locations). It is shown that the distribution of the room penetration loss is lognormal. A comparison with existing models is made and a model for penetration through different floors is proposed

    Enhancing wireless communication system performance through modified indoor environments

    Get PDF
    This thesis reports the methods, the deployment strategies and the resulting system performance improvement of in-building environmental modification. With the increasing use of mobile computing devices such as PDAs, laptops, and the expansion of wireless local area networks (WLANs), there is growing interest in increasing productivity and efficiency through enhancing received signal power. This thesis proposes the deployment of waveguides consisting of frequency selective surfaces (FSSs) in indoor wireless environments and investigates their effect on radio wave propagation. The received power of the obstructed (OBS) path is attenuated significantly as compared with that of the line of sight (LOS) path, thereby requiring an additional link budget margin as well as increased battery power drain. In this thesis, the use of an innovative model is also presented to selectively enhance radio propagation in indoor areas under OBS conditions by reflecting the channel radio signals into areas of interest in order to avoid significant propagation loss. An FSS is a surface which exhibits reflection and/or transmission properties as a function of frequency. An FSS with a pass band frequency response was applied to an ordinary or modified wall as a wallpaper to transform the wall into a frequency selective (FS) wall (FS-WALL) or frequency selective modified wall (FS-MWALL). Measurements have shown that the innovative model prototype can enhance 2.4GHz (IEEE 802.11b/g/n) transmissions in addition to the unmodified wall, whereas other radio services, such as cellular telephony at 1.8GHz, have other routes to penetrate or escape. The FSS performance has been examined intensely by both equivalent circuit modelling, simulation, and practical measurements. Factors that influence FSS performance such as the FSS element dimensions, element conductivities, dielectric substrates adjacent to the FSS, and signal incident angles, were investigated. By keeping the elements small and densely packed, a largely angle-insensitive FSS was developed as a promising prototype for FSS wallpaper. Accordingly, the resultant can be modelled by cascading the effects of the FSS wallpaper and the ordinary wall (FSWALL) or modified wall (FS-MWALL). Good agreement between the modelled, simulated, and the measured results was observed. Finally, a small-scale indoor environment has been constructed and measured in a half-wave chamber and free space measurements in order to practically verify this approach and through the usage of the deterministic ray tracing technique. An initial investigation showing that the use of an innovative model can increase capacity in MIMO systems. This can be explained by the presence of strong multipath components which give rise to a low correlated Rayleigh Channel. This research work has linked the fields of antenna design, communication systems, and building architecture

    A Site-Specific Indoor Wireless Propagation Model

    Get PDF
    In this thesis, we explore the fundamental concepts behind the emerging field of site-specific propagation modeling for wireless communication systems. The first three chapters of background material discuss, respectively, the motivation for this study, the context of the study, and signal behavior and modeling in the predominant wireless propagation environments. A brief survey of existing ray-tracing based site-specific propagation models follows this discussion, leading naturally to the work of new model development undertaken in our thesis project. Following the detailed description of our generalized wireless channel modeling, various interference cases incorporating with this model are thoroughly discussed and results presented at the end of this thesis
    • …
    corecore