1,545 research outputs found

    Chalcogenide-glass polarization-maintaining photonic crystal fiber for mid-infrared supercontinuum generation

    Full text link
    In this paper, we report the design and fabrication of a highly birefringent polarization-maintaining photonic crystal fiber (PM-PCF) made from chalcogenide glass, and its application to linearly-polarized supercontinuum (SC) generation in the mid-infrared region. The PM fiber was drawn using the casting method from As38Se62 glass which features a transmission window from 2 to 10 μm\mu m and a high nonlinear index of 1.13.1017^{-17}m2^{2}W1^{-1}. It has a zero-dispersion wavelength around 4.5 μm\mu m and, at this wavelength, a large birefringence of 6.104^{-4} and consequently strong polarization maintaining properties are expected. Using this fiber, we experimentally demonstrate supercontinuum generation spanning from 3.1-6.02 μm\mu m and 3.33-5.78 μm\mu m using femtosecond pumping at 4 μm\mu m and 4.53 μm\mu m, respectively. We further investigate the supercontinuum bandwidth versus the input pump polarization angle and we show very good agreement with numerical simulations of the two-polarization model based on two coupled generalized nonlinear Schr\"odinger equations.Comment: 13 pages, 8 figure

    Development of Photonic Crystal Fiber Based Gas/ Chemical Sensors

    Full text link
    The development of highly-sensitive and miniaturized sensors that capable of real-time analytes detection is highly desirable. Nowadays, toxic or colorless gas detection, air pollution monitoring, harmful chemical, pressure, strain, humidity, and temperature sensors based on photonic crystal fiber (PCF) are increasing rapidly due to its compact structure, fast response and efficient light controlling capabilities. The propagating light through the PCF can be controlled by varying the structural parameters and core-cladding materials, as a result, evanescent field can be enhanced significantly which is the main component of the PCF based gas/chemical sensors. The aim of this chapter is to (1) describe the principle operation of PCF based gas/ chemical sensors, (2) discuss the important PCF properties for optical sensors, (3) extensively discuss the different types of microstructured optical fiber based gas/ chemical sensors, (4) study the effects of different core-cladding shapes, and fiber background materials on sensing performance, and (5) highlight the main challenges of PCF based gas/ chemical sensors and possible solutions

    Investigations towards the development of a novel multimodal fibre optic sensor for oil and gas applications.

    Get PDF
    Oil and gas (O&G) explorations are moving into deeper zones of earth, causing serious safety concerns. Hence, sensing of critical multiple parameters like high pressure, high temperature (HPHT), chemicals, etc., are required at longer distances. Traditional electrical sensors operate less effectively under these extreme environmental conditions and are susceptible to electromagnetic interference (EMI). Compared to electrical sensors, fibre optic sensors offer several advantages like immunity to EMI, electrical isolation, ability to operate in harsh environmental conditions and freedom from corrosion. Existing fibre optical sensors in the O&G industry, based on step index single mode fibres (SMF), offer limited performance, as they operate within a narrow wavelength window. A novel multimodal sensor configuration, based on photonic crystal fibre (PCF) and utilising a multiwavelength approach, is proposed for the first time for O&G applications. This thesis reports computational and experimental investigations into the new multimodal sensing methodology, integrating both optical phase-change and spectral-change based approaches, needed for multi-parameter sensing. It includes investigations to improve the signal-to-noise ratio (SNR) by enhancing the signal intensity attained through structural, material and positional optimisations of the sensors. Waveguide related, computational investigations on PCF were carried out on different fibre optic core-cladding structures, material infiltrations and material doping to improve the signal intensity from the multimodal sensors for better SNR. COMSOL Multiphysics simulations indicated that structural and material modifications of the PCF have significant effects on light propagation characteristics. The propagation characteristics of the PCF were improved by modifying the geometrical parameters, and microstructuring the fibre core and cladding. Studies carried out on liquid crystal PCF (LCPCF) identified its enhanced mode confinement characteristics and wavelength tenability features (from visible to near infrared), which can be utilised for multi-wavelength applications. Enhancing core refractive index of the PCF improved the electric field confinements and thereby the signal intensity. Doping rare earth elements into the PCF core increases its refractive index and also provides additional spectroscopic features (photoluminescence and Raman), leading to a scope for multi-point, multimodal sensors. Investigations were carried out on PCF-FBG (Fibre Bragg grating) hybrid configuration, analysing their capabilities for optical phase-change based, multipoint, multi-parameter sensing. Computational investigations were carried out using MATLAB software, to study the effect of various fibre grating parameters. These studies helped in improving understanding of the FBG reflectivity-bandwidth characteristics, for tuning the number of sensors that can be accommodated within the same sensing fibre and enhancing the reflected signal for improved SNR. A new approach of FBG sensor positioning has been experimentally evaluated, to improve its strain sensitivity for structural health monitoring (SHM) of O&G structures. Further, experimental investigations were carried out on FBGs for sensing multiple parameters like temperature, strain (both tensile and compressive) and acoustic signals. Various spectroscopic investigations were carried out to identify the scope of rare earth doping within the PCF for photoluminescence and Raman spectroscopy based multimodal sensors. Rare earth doped glasses (Tb, Dy, Yb, Er, Ce and Ho) were developed using melt-quench approach and excitation- photoluminescence emission studies were carried out. The studies identified that photoluminescence signal intensity increases with rare earth concentration up to an optimum value and it can be further improved by tuning the excitation source characteristics. Photoluminescence based temperature studies were carried out using the rare earth doped glasses to identify their suitability for O&G high temperature conditions. Raman spectroscopic investigations were carried out on rare earth (Tb) doped glasses, developed using both melt-quench and sol-gel based approaches. Effect of 785 nm laser excitation on Raman signatures and suitability of rare earth doped materials for fibre-based Raman distributed temperature sensing (DTS) were also studied. Finally, a novel multimodal fibre optic sensor configuration is proposed for the O&G applications, consisting of rare earth doped photonic crystal fibre integrating Bragg gratings and operating in multiple wavelength regimes in a multiplexed fashion. The integrated sensor combination is expected to overcome the limitations of existing sensors with regards to SNR, sensing range and multimodal sensing capability

    Hybrid Optical Fiber Sensors for Smart Materials and Structures

    Get PDF
    There has been a rapid growth in the use of advanced composite materials in a variety of load-bearing structures, for example in aviation for structures such as rotor blades, aircraft fuselage and wing structures. Composite materials embedded with fiber-optic sensors (FOS) have been recognized as one of the prominent enabling technologies for smart materials and structures. The rapid increase in the interest in composite materials embedded with FOS has been driven by numerous applications, such as intelligent composite manufacturing/processing, and safety-related areas in aircrafts. Research has been focused recently on using several optical sensor types working together to form so called “hybrid optical fiber sensors” in order to overcome the limitations of the individual sensor technologies. The main aim of the research described in this thesis is to investigate a hybrid sensing scheme that utilizes polarimetric sensors and FBG sensors working in a complimentary fashion to measure multiple physical parameters in a composite material, with a particular focus on measuring the complex indirect parameters thermal expansion and vibration. The research described in this thesis investigates the performance of a hybrid sensing scheme based on polarimetric sensors and FBG sensors after embedding in a composite material. It is shown that the influence of thermal expansion within a composite material on embedded polarimetric sensors is the main source of errors for embedded fiber sensor strain measurements and that for practical strain sensing applications buffer coated PM-PCF are more suitable for embedding in composite. Further, using a buffer stripped PM-PCF polarimetric sensor, a measurement scheme to measure a composite material\u27s thermal elongation induced strain is proposed. A novel hybrid sensor for simultaneous measurement of strain, temperature and thermal strain is demonstrated by integrating polarimetric sensors based on acrylate coated high bi-refringent polarization maintaining photonic crystal fiber (HB-PM-PCF), and a coating stripped HB-PM-PCF sensor together with an FBG sensor. Flexible demodulation modules that can be embedded or surface attached is a challenge for composite materials containing fiber-optic sensors. In this thesis an interrogation method that allows intensity domain operation of hybrid sensor is demonstrated. Further focusing towards the miniaturization of the hybrid sensor interrogator, a miniaturized flexible interrogator for the demonstrated hybrid sensing scheme embedded in a composite material is also designed. Low frequency vibration measurements are performed for glass fibre-reinforced composite material samples with two different strain-sensitive polarimetric sensor types embedded. It is shown that the strain sensitivity of polarimetric sensors limits the vibration measurements to a certain range of vibration amplitudes. A polarimetric sensor based buffer stripped HB-PM-PCF is demonstrated for monitoring the different stages of the curing process for a Mageneto-Rheological composite material. By providing information about multiple parameters such as strain, temperature, thermal strain, vibration amplitude and vibration frequency the proposed and demonstrated hybrid sensing approach has a high potential to change the paradigm for smart material design in the future

    Internal strain monitoring in composite materials with embedded photonic crystal fiber Bragg gratings

    Get PDF
    The possibility of embedding optical fiber sensors inside carbon fiber reinforced polymer (CFRP) for structural health monitoring purposes has already been demonstrated previously. So far however, these sensors only allowed axial strain measurements because of their low sensitivity for strain in the direction perpendicular to the optical fiber's axis. The design flexibility provided by novel photonic crystal fiber (PCF) technology now allows developing dedicated fibers with substantially enhanced sensitivity to such transverse loads. We exploited that flexibility and we developed a PCF that, when equipped with a fiber Bragg grating (FBG), leads to a sensor that allows measuring transverse strains in reinforced composite materials, with an order of magnitude increase of the sensitivity over the state-of-the-art. In addition it allows shear strain sensing in adhesive bonds, which are used in composite repair patches. This is confirmed both with experiments and finite element simulations on such fibers embedded in CFRP coupons and adhesive bonds. Our sensor brings the achievable transverse strain measurement resolution close to a target value of 1 mu strain and could therefore play an important role for multi-dimensional strain sensing, not only in the domain of structural health monitoring, but also in the field of composite material production monitoring. Our results thereby illustrate the added value that PCFs have to offer for internal strain measurements inside composite materials and structures

    Transition ductile-fragile des aciers pour gazoducs : Étude quantitative des ruptures fragiles hors plan et corrélation à l’anisotropie de microtexture

    Get PDF
    High toughness of pipeline steels at low temperature is required to avoid catastrophic propagation of brittle crack. The aim of the study is to improve physical understanding and quantitative assessment of the toughness behavior of hot-rolled pipeline steels, focusing on the lower part of the ductile to brittle transition temperature range.The impact toughness of these steels is commonly validated using drop weight tear tests (DWTT), on the basis of fracture surfaces that must exhibit less than 15% of brittle fracture appearance. In thermomechanical control processed steels, brittle out-of-plane cracks such as delamination (which propagates along the rolling plane), and brittle tilted fracture (BTF) along theta-planes (tilted around RD by 40° with respect to rolling plane), have been characterized in the ductile to brittle transition temperature range, for both industrial (DWTT) and laboratory Charpy impact tests. In both cases, as well as in fracture toughness tests, such brittle out-of-plane cracking has been shown to impair the impact toughness.The anisotropy in plastic flow and sensitivity to cleavage fracture has been characterized as a function of temperature, by using tensile tests on specifically designed smooth and notched specimens. From finite element mechanical analysis of these tests, critical cleavage stresses normal to the rolling plane and the theta-plane are considerably lower (around 25%) than for planes normal to the rolling and transverse directions.The anisotropy in critical cleavage stress has been quantitatively correlated to microtexture anisotropy. So-called “potential cleavage facets” have been defined and measured in this study, as regions with unfavorably oriented {100} planes, which are taken as unit crack paths for cleavage propagation. A sample containing 20% of potential cleavage facets had a critical cleavage stress 20% lower than a sample with only 10% of potential cleavage facets.The size and shape of these potential cleavage facets evolve during plastic deformation. Therefore, the critical cleavage stress was found to be affected by plastic strain history. In the case of delamination, potential cleavage facets along the rolling plane were elongated during loading, their area was increased and the corresponding critical cleavage stress decreased by around 30% with respect to the undeformed case. This made delamination cracking easier. Moreover, the presence of a ductile crack at the initiation site of delamination locally modified the stress state and also facilitated delamination occurrence. A criterion has been developed to numerically predict the onset of delamination in tensile and Charpy specimens.Application of this approach to heat-treated and to prestrained specimens eventually showed that it was possible to modify the sensitivity to delamination by strongly modifying the initial microtexture anisotropy.La bonne ténacité des aciers pour gazoducs aux basses températures est nécessaire pour éviter la propagation de fissures de manière catastrophique. Cette étude vise à améliorer la compréhension physique et l'évaluation quantitative du comportement à rupture des aciers pour gazoducs laminés à chaud, en nous intéressant plus particulièrement aux températures au pied de la transition ductile-fragile .La résilience de ces aciers est généralement validée à l'aide d'essais dits drop weight tear tests (DWTT), après lesquels le faciès de rupture doit contenir moins de 15% de zone fragile. Pour les aciers mis en forme par laminage thermomécanique (TMCP), des ruptures fragiles hors plan, comme le délaminage (qui se propage dans le plan de laminage de la tôle), et la rupture fragile en biseau le long des plans dits thêta (inclinés de 40° autour de la direction de laminage par rapport au plan de laminage) apparaissent dans la transition ductile-fragile. Ces modes de rupture, observés lors des essais de résilience (DWTT, Charpy) et de ténacité (CT), affectent la résistance à la rupture de ces aciers.L'anisotropie de l'écoulement plastique, puis celle de la sensibilité à la rupture par clivage ont été caractérisées en fonction de la température, à l'aide d'essais de traction sur des éprouvettes lisses et entaillées conçues pour cette étude. L'analyse mécanique de ces essais à l'aide de calculs par éléments finis a permis de déterminer des contraintes critiques de clivage dans les directions perpendiculaires au plan de laminage et aux plans thêta. Les valeurs obtenues dans ces directions sont de 25% inférieures à celles correspondant aux directions de laminage et travers long.L'anisotropie de la contrainte critique de clivage a été quantitativement corrélée à l'anisotropie de microtexture du matériau. Des entités appelées « facettes de clivage potentielles » ont été définies et mesurées dans cette étude, comme des régions contenant un plan {100} défavorablement orienté et dans lesquelles les fissures de clivage se propagent sans être arrêtées. Par exemple, un plan contenant 20% de facettes de clivage potentielles aurait une contrainte critique de clivage de 20% moins élevée qu'un plan présentant seulement 10% de facettes de clivage potentielles.La taille et la forme de ces facettes de clivage potentielles évoluent avec la déformation plastique. Par conséquent, la contrainte critique de clivage est affectée par l'historique de déformation. Dans le cas du délaminage, les facettes de clivage potentielles s'allongent au cours d'un chargement dans la direction travers long, conduisant à une augmentation de leur taille effective et par conséquent à une diminution (qui peut atteindre 30%) de la contrainte critique de clivage dans le plan de la tôle. Cette diminution facilite in fine l'apparition du délaminage. De plus, la présence de micro-fissures ductiles facilite la rupture par délaminage en modifiant l'état de contrainte local. Un critère a ainsi été proposé pour prédire numériquement l'amorçage du délaminage dans des éprouvettes de traction et/ou de résilience Charpy.L'application de cette approche à des échantillons traités thermiquement et à des échantillons pré-déformés a montré que la sensibilité au délaminage pouvait être contrôlée en modifiant la texture locale initiale du matériau

    Recent Progress in Optical Fiber Research

    Get PDF
    This book presents a comprehensive account of the recent progress in optical fiber research. It consists of four sections with 20 chapters covering the topics of nonlinear and polarisation effects in optical fibers, photonic crystal fibers and new applications for optical fibers. Section 1 reviews nonlinear effects in optical fibers in terms of theoretical analysis, experiments and applications. Section 2 presents polarization mode dispersion, chromatic dispersion and polarization dependent losses in optical fibers, fiber birefringence effects and spun fibers. Section 3 and 4 cover the topics of photonic crystal fibers and a new trend of optical fiber applications. Edited by three scientists with wide knowledge and experience in the field of fiber optics and photonics, the book brings together leading academics and practitioners in a comprehensive and incisive treatment of the subject. This is an essential point of reference for researchers working and teaching in optical fiber technologies, and for industrial users who need to be aware of current developments in optical fiber research areas

    Interferometric fibre optic sensors incorporating photonic crystal fibre, for the measurement of strain and load

    Get PDF
    Strain sensing is important in numerous fields such as: structural health monitoring [1], manufacture of composites [2], and civil engineering [3]. For many of these fields fibre optic based sensors have been utilised due to their numerous advantages, that will be described in Chapter 2. In this thesis I will described the production of three new fibre optic based strain sensors: a microcavity based in-fibre Fabry-Perot etalon (Chapter 4), a birefringent photonic crystal fibre (PM-PCF) based Michleson-interferometer (Chapter 5), and a polarisation maintaining fibre (PMF) based Michleson-interferometer (Chapter 6). In this chapter we will describe the aim of this work, the novelty of this work, and how this work is presented in this thesis

    Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    Get PDF
    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10(−5) profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser
    corecore